Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (59)

Advertisement

Research Article Free access | 10.1172/JCI119732

Insulin modulation of an endothelial nitric oxide component present in the alpha2- and beta-adrenergic responses in human forearm.

G Lembo, G Iaccarino, C Vecchione, E Barbato, R Izzo, D Fontana, and B Trimarco

IRCCS "INM NEUROMED," Pozzilli (IS), Italy. glembo@connect.it

Find articles by Lembo, G. in: PubMed | Google Scholar

IRCCS "INM NEUROMED," Pozzilli (IS), Italy. glembo@connect.it

Find articles by Iaccarino, G. in: PubMed | Google Scholar

IRCCS "INM NEUROMED," Pozzilli (IS), Italy. glembo@connect.it

Find articles by Vecchione, C. in: PubMed | Google Scholar

IRCCS "INM NEUROMED," Pozzilli (IS), Italy. glembo@connect.it

Find articles by Barbato, E. in: PubMed | Google Scholar

IRCCS "INM NEUROMED," Pozzilli (IS), Italy. glembo@connect.it

Find articles by Izzo, R. in: PubMed | Google Scholar

IRCCS "INM NEUROMED," Pozzilli (IS), Italy. glembo@connect.it

Find articles by Fontana, D. in: PubMed | Google Scholar

IRCCS "INM NEUROMED," Pozzilli (IS), Italy. glembo@connect.it

Find articles by Trimarco, B. in: PubMed | Google Scholar

Published October 15, 1997 - More info

Published in Volume 100, Issue 8 on October 15, 1997
J Clin Invest. 1997;100(8):2007–2014. https://doi.org/10.1172/JCI119732.
© 1997 The American Society for Clinical Investigation
Published October 15, 1997 - Version history
View PDF
Abstract

We explored in 51 normal subjects, distributed in various series of experiments, whether endothelium nitric oxide may play a role in insulin modulation of alpha2- and beta-adrenergic- evoked vascular responses. In particular, we examined the forearm blood flow response (FBF, ml.min-1.dl-1) to intrabrachial infusion of BHT-933 (0.5, 1, and 2 microg.min-1.dl-1) or isoproterenol (1, 3, and 6 ng. min-1.dl-1) in control conditions, during intrabrachial infusion of insulin alone (0.05 mU.kg-1.min-1) and associated with l-N-monomethylarginine (L-NMMA) (0.05 microg.min-1.dl-1), a nitric oxide synthase inhibitor. In control conditions both BHT-933 and isoproterenol induced a dose-dependent vascular response. Local hyperinsulinemia (deep venous plasma insulin 68.5+/-4 microU/ml) did not change basal FBF whereas attenuated BHT-933 vasoconstriction and enhanced isoproterenol vasodilation. L-NMMA reduced basal FBF and abolished the insulin effect on BHT-933 and isoproterenol response. To clarify whether a nitric oxide component is included in alpha2- and beta-adrenergic response and may be responsible for insulin vascular effect, we further examined BHT-933 and isoproterenol responses during nitric oxide inhibition. Interestingly, L-NMMA potentiated the BHT-933 vasoconstriction and attenuated the isoproterenol vasodilation and, in these conditions, insulin was no more able to exhibit its vascular effects. Finally, to rule out the possibility that the conteracting effect of L-NMMA may not be specifically related to insulin action, dose-response curves to phenylephrine (0.5, 1, and 2 microg.min-1.dl-1) or sodium nitroprusside (1, 2, and 4 microg.min-1.dl-1) were also performed. Both insulin and L-NMMA were unable to alter the phenylephrine-induced vasoconstriction and the sodium nitroprusside vasodilation. In conclusion, our data demonstrate an endothelial nitric oxide component in the alpha2- and beta-adrenergic vascular responses which is the target of the insulin vascular action.

Version history
  • Version 1 (October 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (59)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts