Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (73)

Advertisement

Research Article Free access | 10.1172/JCI119702

Nitric oxide inhibition of coxsackievirus replication in vitro.

C Zaragoza, C J Ocampo, M Saura, A McMillan, and C J Lowenstein

Division of Cardiology, Department of Medicine, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Find articles by Zaragoza, C. in: PubMed | Google Scholar

Division of Cardiology, Department of Medicine, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Find articles by Ocampo, C. in: PubMed | Google Scholar

Division of Cardiology, Department of Medicine, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Find articles by Saura, M. in: PubMed | Google Scholar

Division of Cardiology, Department of Medicine, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Find articles by McMillan, A. in: PubMed | Google Scholar

Division of Cardiology, Department of Medicine, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Find articles by Lowenstein, C. in: PubMed | Google Scholar

Published October 1, 1997 - More info

Published in Volume 100, Issue 7 on October 1, 1997
J Clin Invest. 1997;100(7):1760–1767. https://doi.org/10.1172/JCI119702.
© 1997 The American Society for Clinical Investigation
Published October 1, 1997 - Version history
View PDF
Abstract

Nitric oxide is a radical molecule with antibacterial, -parasitic, and -viral properties. We investigated the mechanism of NO inhibition of Coxsackievirus B3 (CVB3) replication in vitro by determining the effect of NO upon a single replicative cycle of CVB3 grown in HeLa cells. Transfection of inducible NO synthase cDNA into HeLa cells reduces the number of viral particles produced during a single cycle of growth. Similarly, a noncytotoxic concentration of the NO donor S-nitroso-amino-penicillamine reduces the number of viral particles in a dose-dependent manner. To explore the mechanisms by which NO exerts its antiviral effect, we assayed the attachment, replication, and translation steps of the CVB3 life cycle. NO does not affect the attachment of CVB3 to HeLa cells. However, NO inhibits CVB3 RNA synthesis, as shown by a [3H]uridine incorporation assay, reverse transcription-PCR, and Northern analysis. In addition, NO inhibits CVB3 protein synthesis, as shown by [35S]methionine protein labeling and Western blot analysis of infected cells. Thus, NO inhibits CVB3 replication in part by inhibiting viral RNA synthesis by an unknown mechanism.

Version history
  • Version 1 (October 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (73)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts