Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (43)

Advertisement

Research Article Free access | 10.1172/JCI119584

Cytosolic-free calcium increases to greater than 100 micromolar in ATP-depleted proximal tubules.

J M Weinberg, J A Davis, and M A Venkatachalam

Division of Nephrology, Department of Internal Medicine, University of Michigan and Veteran's Affairs Medical Center, Ann Arbor, Michigan 48109, USA. wnberg@umich.edu

Find articles by Weinberg, J. in: PubMed | Google Scholar

Division of Nephrology, Department of Internal Medicine, University of Michigan and Veteran's Affairs Medical Center, Ann Arbor, Michigan 48109, USA. wnberg@umich.edu

Find articles by Davis, J. in: PubMed | Google Scholar

Division of Nephrology, Department of Internal Medicine, University of Michigan and Veteran's Affairs Medical Center, Ann Arbor, Michigan 48109, USA. wnberg@umich.edu

Find articles by Venkatachalam, M. in: PubMed | Google Scholar

Published August 1, 1997 - More info

Published in Volume 100, Issue 3 on August 1, 1997
J Clin Invest. 1997;100(3):713–722. https://doi.org/10.1172/JCI119584.
© 1997 The American Society for Clinical Investigation
Published August 1, 1997 - Version history
View PDF
Abstract

Previous studies have shown that cytosolic-free Ca2+ (Caf) increases to at least low micromolar concentrations during ATP depletion of isolated kidney proximal tubules. However, peak levels could not be determined precisely with the Ca2+-sensitive fluorophore, fura-2, because of its high affinity for Ca2+. Now, we have used two low affinity Ca2+ fluorophores, mag-fura-2 (furaptra) and fura-2FF, to quantitate the full magnitude of Caf increase. Between 30 and 60 min after treatment with antimycin to deplete ATP in the presence of glycine to prevent lytic plasma membrane damage, Caf measured with mag-fura-2 exceeded 10 microM in 91% of tubules studied and 68% had increases to greater than 100 microM. Caf increases of similar magnitude that were dependent on influx of medium Ca2+ were also seen using the new low Ca2+ affinity, Mg2+-insensitive, fluorophore fura-2FF in tubules depleted of ATP by hypoxia, and these increases were reversed by reoxygenation. Total cell Ca2+ levels in antimycin-treated or hypoxic tubules did not change, suggesting that mitochondria were not buffering the increased Caf during ATP depletion. Considered in the context of the high degree of structural preservation of glycine-treated tubule cells during ATP depletion and the commonly assumed Ca2+ requirements for phospholipid hydrolysis, actin disassembly, and Ca2+-mediated structural damage, the remarkable elevations of Caf demonstrated here suggest an unexpected resistance to the deleterious effects of increased Caf during energy deprivation in the presence of glycine.

Version history
  • Version 1 (August 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (43)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts