Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119581

Barrier effects of hyperosmolar signaling in microvascular endothelium of rat lung.

R Ragette, C Fu, and J Bhattacharya

Department of Medicine, St. Luke's-Roosevelt Hospital Center, College of Physicians and Surgeons, Columbia University, New York 10019, USA.

Find articles by Ragette, R. in: PubMed | Google Scholar

Department of Medicine, St. Luke's-Roosevelt Hospital Center, College of Physicians and Surgeons, Columbia University, New York 10019, USA.

Find articles by Fu, C. in: PubMed | Google Scholar

Department of Medicine, St. Luke's-Roosevelt Hospital Center, College of Physicians and Surgeons, Columbia University, New York 10019, USA.

Find articles by Bhattacharya, J. in: PubMed | Google Scholar

Published August 1, 1997 - More info

Published in Volume 100, Issue 3 on August 1, 1997
J Clin Invest. 1997;100(3):685–692. https://doi.org/10.1172/JCI119581.
© 1997 The American Society for Clinical Investigation
Published August 1, 1997 - Version history
View PDF
Abstract

We determined the effects of hyperosmolarity on lung microvascular barrier properties by means of the split-drop technique in single venular capillaries of the isolated, blood-perfused rat lung. Using isosmolar and hyperosmolar test solutions (colloid osmotic pressure = 21 cm H2O), we quantified transcapillary flux at a fixed absorptive capillary pressure, and the capillary hydraulic conductivity (Lp). Loss of barrier function was indicated in flux reversal from isosmolar absorption to hyperosmolar filtration (P < 0. 01), and by hyperosmolarity-induced Lp increase (P < 0.01). Barrier recovery after a 1-min hyperosmolar exposure was delayed > 25 min. The flux reversal was blocked by the tyrosine kinase inhibitors genistein and MDC (P < 0.01). Genistein also inhibited the Lp increase (P < 0.01). Immunoblots of hyperosmolarity-exposed, cultured rat lung microvascular endothelial cells (RLMEC) and of endothelial cells freshly harvested from lungs given hyperosmolar infusions indicated a genistein-inhibitable enhancement of protein tyrosine phosphorylation. Immunoprecipitation studies indicated tyrosine phosphorylation of the mitogen activated protein kinases (MAPK) ERK1 and ERK2 and the adaptor protein Shc in lysates of RLMEC exposed to hyperosmolar conditions. We conclude that in lung venular capillaries hyperosmolarity deteriorates barrier properties, possibly by inducing tyrosine phosphorylation of endothelial proteins.

Version history
  • Version 1 (August 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts