Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (26)

Advertisement

Research Article Free access | 10.1172/JCI119573

Genetic correction of dystrophin deficiency and skeletal muscle remodeling in adult MDX mouse via transplantation of retroviral producer cells.

A Fassati, D J Wells, P A Sgro Serpente, F S Walsh, S C Brown, P N Strong, and G Dickson

Department of Biochemistry, Royal Holloway College, University of London, Surrey TW20 0EX.

Find articles by Fassati, A. in: PubMed | Google Scholar

Department of Biochemistry, Royal Holloway College, University of London, Surrey TW20 0EX.

Find articles by Wells, D. in: PubMed | Google Scholar

Department of Biochemistry, Royal Holloway College, University of London, Surrey TW20 0EX.

Find articles by Sgro Serpente, P. in: PubMed | Google Scholar

Department of Biochemistry, Royal Holloway College, University of London, Surrey TW20 0EX.

Find articles by Walsh, F. in: PubMed | Google Scholar

Department of Biochemistry, Royal Holloway College, University of London, Surrey TW20 0EX.

Find articles by Brown, S. in: PubMed | Google Scholar

Department of Biochemistry, Royal Holloway College, University of London, Surrey TW20 0EX.

Find articles by Strong, P. in: PubMed | Google Scholar

Department of Biochemistry, Royal Holloway College, University of London, Surrey TW20 0EX.

Find articles by Dickson, G. in: PubMed | Google Scholar

Published August 1, 1997 - More info

Published in Volume 100, Issue 3 on August 1, 1997
J Clin Invest. 1997;100(3):620–628. https://doi.org/10.1172/JCI119573.
© 1997 The American Society for Clinical Investigation
Published August 1, 1997 - Version history
View PDF
Abstract

Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotically inactivated and transplanted in adult nude/mdx mice. Transplantation of 3 x 10(6) producer cells in a single site of the tibialis anterior muscle resulted in the transduction of between 5.5 and 18% total muscle fibers. The same procedure proved also feasible in immunocompetent mdx mice under short-term pharmacological immunosuppression. Minidystrophin expression was stable for up to 6 mo and led to alpha-sarcoglycan reexpression. Muscle stem cells could be transduced in vivo using this procedure. Transduced dystrophic skeletal muscle showed evidence of active remodeling reminiscent of the genetic normalization process which takes place in female DMD carriers. Overall, these results demonstrate that retroviral-mediated dystrophin gene transfer via transplantation of producer cells is a valid approach towards the long-term goal of gene therapy of DMD.

Version history
  • Version 1 (August 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (26)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts