Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (97)

Advertisement

Research Article Free access | 10.1172/JCI119567

A role for TGFbeta1 in langerhans cell biology. Further characterization of the epidermal Langerhans cell defect in TGFbeta1 null mice.

T A Borkowski, J J Letterio, C L Mackall, A Saitoh, X J Wang, D R Roop, R E Gress, and M C Udey

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Borkowski, T. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Letterio, J. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Mackall, C. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Saitoh, A. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Wang, X. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Roop, D. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Gress, R. in: PubMed | Google Scholar

Dermatology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.

Find articles by Udey, M. in: PubMed | Google Scholar

Published August 1, 1997 - More info

Published in Volume 100, Issue 3 on August 1, 1997
J Clin Invest. 1997;100(3):575–581. https://doi.org/10.1172/JCI119567.
© 1997 The American Society for Clinical Investigation
Published August 1, 1997 - Version history
View PDF
Abstract

Previous studies of TGFbeta1 null (-/-) mice indicated that the epidermis was devoid of Langerhans cells (LC) and that the LC deficiency was not secondary to the inflammation that is the dominant feature of the -/- phenotype (Borkowski, T.A., J.J. Letterio, A.G. Farr, and M.C. Udey. 1996. J. Exp. Med. 184:2417-2422). Herein, we demonstrate that dendritic cells could be expanded from the bone marrow of -/- mice and littermate controls. Bone marrow from -/- mice also gave rise to LC after transfer into lethally irradiated recipients. Thus, the LC defect in TGFbeta1 null mice does not result from an absolute deficiency in bone marrow precursors, and paracrine TGFbeta1 production is sufficient for LC development. Several approaches were used to assess the suitability of -/- skin for LC localization. A survey revealed that although a number of cytokine mRNAs were expressed de novo, mRNAs encoding proinflammatory cytokines known to mobilize LC from epidermis (IL-1 and TNFalpha) were not strikingly overrepresented in -/- skin. In addition, bone marrow-derived LC populated full-thickness TGFbeta1 null skin after engraftment onto BALB/c nu/nu recipients. Finally, the skin of transgenic mice expressing a truncated loricrin promoter-driven dominant-negative TGFbeta type II receptor contained normal numbers of LC. Because TGFbeta1 signaling in these mice is disrupted only in keratinocytes and the keratinocyte hyperproliferative component of the TGFbeta1 -/- phenotype is reproduced, these results strongly suggest that the LC defect in TGFbeta1 null mice is not due to an epidermal abnormality but reflects a requirement of murine LC (or their precursors) for TGFbeta1.

Version history
  • Version 1 (August 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (97)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts