Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 1

See more details

Posted by 1 X users
42 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119550

Prevention of an increase in plasma cortisol during hypoglycemia preserves subsequent counterregulatory responses.

S N Davis, C Shavers, B Davis, and F Costa

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Find articles by Davis, S. in: PubMed | Google Scholar

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Find articles by Shavers, C. in: PubMed | Google Scholar

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Find articles by Davis, B. in: PubMed | Google Scholar

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Find articles by Costa, F. in: PubMed | Google Scholar

Published July 15, 1997 - More info

Published in Volume 100, Issue 2 on July 15, 1997
J Clin Invest. 1997;100(2):429–438. https://doi.org/10.1172/JCI119550.
© 1997 The American Society for Clinical Investigation
Published July 15, 1997 - Version history
View PDF
Abstract

The aim of this study was to determine whether preventing increases in plasma cortisol during antecedent hypoglycemia preserves autonomic nervous system counterregulatory responses during subsequent hypoglycemia. Experiments were carried out on 15 (8 male/7 female) healthy, overnight-fasted subjects and 8 (4 male/4 female) age- and weight-matched patients with primary adrenocortical failure. 5 d before a study, patients had their usual glucocorticoid therapy replaced with a continuous subcutaneous infusion of cortisol programmed to produce normal daily circadian levels. Both groups underwent identical 2-d experiments. On day 1, insulin was infused at a rate of 1.5 mU/kg per min, and 2-h clamped hypoglycemia (53+/-2 mg/dl) was obtained during the morning and afternoon. The next morning, subjects underwent an additional 2-h hypoglycemic (53+/-2 mg/ dl) hyperinsulinemic clamp. In controls, day 2 steady state epinephrine, norepinephrine, pancreatic polypeptide, glucagon, growth hormone, and muscle sympathetic nerve activity were significantly blunted (P < 0.01) compared with day 1 hypoglycemia. In marked contrast, when increases of plasma cortisol were prevented in the patient group, day 2 neuroendocrine, muscle sympathetic nerve activity, hypoglycemic symptoms, and metabolic counterregulatory responses were equivalent with day 1 results. We conclude that (a) prevention of increases of cortisol during antecedent hypoglycemia preserves many critical autonomic nervous system counterregulatory responses to subsequent hypoglycemia; (b) hypoglycemia-induced increases in plasma cortisol levels are a major mechanism responsible for causing subsequent hypoglycemic counterregulatory failure; and (c) our results suggest that other mechanisms, apart from cortisol, do not play a major role in causing hypoglycemia-associated autonomic failure.

Version history
  • Version 1 (July 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 1
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
42 readers on Mendeley
See more details