Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
95 readers on Mendeley
  • Article usage
  • Citations to this article (133)

Advertisement

Research Article Free access | 10.1172/JCI119536

Neuronal cell death in Alzheimer's disease correlates with apoE uptake and intracellular Abeta stabilization.

Frank M. LaFerla, Juan C. Troncoso, Dudley K. Strickland, Claudia H. Kawas, and Gilbert Jay

Department of Virology, Jerome H. Holland Laboratory, Rockville, Maryland 20855, USA.

Find articles by LaFerla, F. in: JCI | PubMed | Google Scholar

Department of Virology, Jerome H. Holland Laboratory, Rockville, Maryland 20855, USA.

Find articles by Troncoso, J. in: JCI | PubMed | Google Scholar

Department of Virology, Jerome H. Holland Laboratory, Rockville, Maryland 20855, USA.

Find articles by Strickland, D. in: JCI | PubMed | Google Scholar

Department of Virology, Jerome H. Holland Laboratory, Rockville, Maryland 20855, USA.

Find articles by Kawas, C. in: JCI | PubMed | Google Scholar

Department of Virology, Jerome H. Holland Laboratory, Rockville, Maryland 20855, USA.

Find articles by Jay, G. in: JCI | PubMed | Google Scholar

Published July 15, 1997 - More info

Published in Volume 100, Issue 2 on July 15, 1997
J Clin Invest. 1997;100(2):310–320. https://doi.org/10.1172/JCI119536.
© 1997 The American Society for Clinical Investigation
Published July 15, 1997 - Version history
View PDF
Abstract

The brains of individuals with Alzheimer's disease (AD) are characterized by extracellular deposition of beta-amyloid protein (Abeta), intracellular neurofibrillary tangles, and loss of neurons. To study molecular markers associated with dying cells in the AD brain, in situ DNA labeling techniques were used to visualize cells with DNA fragmentation. We observed that intracellular accumulation of apolipoprotein E (apoE) is correlated with the detection of intracellular Abeta-like immunoreactivity within the same cytoplasmic granules, suggesting that uptake of lipids may have stabilized the hydrophobic Abeta protein within the cell. These apoE-containing neurons also exhibit high expression of a cell surface receptor, gp330, which is known to bind apoE. Cells containing significant nuclear DNA fragmentation express the highest level of cell surface gp330. Extracellular deposition of Abeta is detected only upon neuronal cell death, initially as halos of Abeta immunoreactivity around individual dying neurons, and subsequently as Abeta plaques containing numerous neuronal cell ghosts. Based on our in situ analysis of nuclear DNA fragmentation, we conclude that neuronal cell death likely occurs before the extracellular deposition of Abeta in AD brains.

Version history
  • Version 1 (July 15, 1997): Updated XML with full author first names.

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (133)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
95 readers on Mendeley
See more details