Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
24 readers on Mendeley
  • Article usage
  • Citations to this article (51)

Advertisement

Research Article Free access | 10.1172/JCI119398

Growth hormone and bile acid synthesis. Key role for the activity of hepatic microsomal cholesterol 7alpha-hydroxylase in the rat.

M Rudling, P Parini, and B Angelin

Department of Medicine, Karolinska Institute at Huddinge University Hospital, Sweden. mats.rudling@cnt.ki.se

Find articles by Rudling, M. in: PubMed | Google Scholar

Department of Medicine, Karolinska Institute at Huddinge University Hospital, Sweden. mats.rudling@cnt.ki.se

Find articles by Parini, P. in: PubMed | Google Scholar

Department of Medicine, Karolinska Institute at Huddinge University Hospital, Sweden. mats.rudling@cnt.ki.se

Find articles by Angelin, B. in: PubMed | Google Scholar

Published May 1, 1997 - More info

Published in Volume 99, Issue 9 on May 1, 1997
J Clin Invest. 1997;99(9):2239–2245. https://doi.org/10.1172/JCI119398.
© 1997 The American Society for Clinical Investigation
Published May 1, 1997 - Version history
View PDF
Abstract

Growth hormone (GH) has an important role in the regulation of hepatic LDL receptor expression and plasma lipoprotein levels. This investigation was undertaken to characterize the effects of GH on hepatic cholesterol and bile acid metabolism in the rat. In hypophysectomized (Hx) rats, the activities of the rate-limiting enzymes in cholesterol and bile acid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and cholesterol 7alpha-hydroxylase (C7alphaOH), were reduced by 71 and 64%, respectively. HMG CoA reductase mRNA levels were reduced by 37%, whereas C7alphaOH mRNA was increased by 81%. LDL receptor expression was reduced by 18% in Hx rats, without any change in the LDL receptor mRNA levels. Although the normal diurnal variation of C7alphaOH activity was preserved in Hx rats, the activity of C7alphaOH was much reduced both at midday and midnight. Total hepatic cholesterol was increased by 14% in Hx animals whereas microsomal cholesterol was unchanged. The rate of cholesterol esterification was enhanced (by 38%) in liver microsomes from Hx rats. Stepwise hormonal substitution of Hx rats showed that GH, but not thyroid hormone or cortisone, was essential to normalize the enzymatic activity of C7alphaOH. GH also normalized the altered plasma lipoprotein pattern in Hx rats, and increased the fecal output of bile acids. The latter effect was particularly evident when GH was combined with cortisone and thyroid hormone. Also in normal rats, GH stimulated C7alphaOH activity. In conclusion, GH has an essential role to maintain a normal enzymatic activity of C7alphaOH, and this, at least in part, explains the effects of GH on hepatic cholesterol metabolism. GH is also of critical importance to normalize the altered plasma lipoprotein pattern in Hx rats.

Version history
  • Version 1 (May 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (51)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
24 readers on Mendeley
See more details