Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (232)

Advertisement

Research Article Free access | 10.1172/JCI119390

Role of the glucosamine pathway in fat-induced insulin resistance.

M Hawkins, N Barzilai, R Liu, M Hu, W Chen, and L Rossetti

Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Find articles by Hawkins, M. in: PubMed | Google Scholar

Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Find articles by Barzilai, N. in: PubMed | Google Scholar

Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Find articles by Liu, R. in: PubMed | Google Scholar

Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Find articles by Hu, M. in: PubMed | Google Scholar

Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Find articles by Chen, W. in: PubMed | Google Scholar

Division of Endocrinology and Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Find articles by Rossetti, L. in: PubMed | Google Scholar

Published May 1, 1997 - More info

Published in Volume 99, Issue 9 on May 1, 1997
J Clin Invest. 1997;99(9):2173–2182. https://doi.org/10.1172/JCI119390.
© 1997 The American Society for Clinical Investigation
Published May 1, 1997 - Version history
View PDF
Abstract

To examine whether the hexosamine biosynthetic pathway might play a role in fat-induced insulin resistance, we monitored the effects of prolonged elevations in FFA availability both on skeletal muscle levels of UDP-N-acetyl-hexosamines and on peripheral glucose disposal during 7-h euglycemic-hyperinsulinemic (approximately 500 microU/ml) clamp studies. When the insulin-induced decrease in the plasma FFA levels (to approximately 0.3 mM) was prevented by infusion of a lipid emulsion in 15 conscious rats (plasma FFA approximately 1.4 mM), glucose uptake (5-7 h = 32.5+/-1.7 vs 0-2 h = 45.2+/-2.8 mg/kg per min; P < 0.01) and glycogen synthesis (P < 0.01) were markedly decreased. During lipid infusion, muscle UDP-N-acetyl-glucosamine (UDP-GlcNAc) increased by twofold (to 53.4+/-1.1 at 3 h and to 55.5+/-1.1 nmol/gram at 7 h vs 20.4+/-1.7 at 0 h, P < 0.01) while glucose-6-phosphate (Glc-6-P) levels were increased at 3 h (475+/-49 nmol/gram) and decreased at 7 h (133+/-7 vs 337+/-28 nmol/gram at 0 h, P < 0.01). To discern whether such an increase in the skeletal muscle UDP-GlcNAc concentration could account for the development of insulin resistance, we generated similar increases in muscle UDP-GlcNAc using three alternate experimental approaches. Euglycemic clamps were performed after prolonged hyperglycemia (18 mM, n = 10), or increased availability of either glucosamine (3 micromol/kg per min; n = 10) or uridine (30 micromol/kg per min; n = 4). These conditions all resulted in very similar increases in the skeletal muscle UDP-GlcNAc (to approximately 55 nmol/gram) and markedly impaired glucose uptake and glycogen synthesis. Thus, fat-induced insulin resistance is associated with: (a) decreased skeletal muscle Glc-6-P levels indicating defective transport/phosphorylation of glucose; (b) marked accumulation of the endproducts of the hexosamine biosynthetic pathway preceding the onset of insulin resistance. Most important, the same degree of insulin resistance can be reproduced in the absence of increased FFA availability by a similar increase in skeletal muscle UDP-N-acetyl-hexosamines. In conclusion, our results support the hypothesis that increased FFA availability induces skeletal muscle insulin resistance by increasing the flux of fructose-6-phosphate into the hexosamine pathway.

Version history
  • Version 1 (May 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (232)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts