The outer medullary collecting duct (OMCD) absorbs HCO3- at high rates, but it is not clear if it responds to metabolic acidosis to increase H+ secretion. We measured net HCO3- transport in isolated perfused OMCDs taken from deep in the inner stripes of kidneys from control and acidotic (NH4Cl-fed for 3 d) rabbits. We used specific inhibitors to characterize the mechanisms of HCO3- transport: 10 microM Sch 28080 or luminal K+ removal to inhibit P-type H+,K+-ATPase activity, and 5-10 nM bafilomycin A1 or 1-10 nM concanamycin A to inhibit H+-ATPase activity. The results were comparable using either of each pair of inhibitors, and allowed us to show in control rabbits that 65% of net HCO3- absorption depended on H+-ATPase (H flux), and 35% depended on H+,K+-ATPase (H,K flux). Tubules from acidotic rabbits showed higher rates of HCO3- absorption (16.8+/-0.3 vs. 12.8+/-0.2 pmol/min per mm, P < 0.01). There was no difference in the H,K flux (5.9+/-0.2 vs. 5.8+/-0.2 pmol/min per mm), whereas there was a 61% higher H flux in segments from acidotic rabbits (11.3+/-0.2 vs. 7.0+/-0.2 pmol/min per mm, P < 0.01). Transport was then measured in other OMCDs before and after incubation for 1 h at pH 6.8, followed by 2 h at pH 7.4 (in vitro metabolic acidosis). Acid incubation in vitro stimulated HCO3- absorption (12.3+/-0.3 to 16.2+/-0.3 pmol/min per mm, P < 0.01), while incubation at pH 7.4 for 3 h did not change basal rate (11.8+/-0.4 to 11.7+/-0.4 pmol/min per mm). After acid incubation the H,K flux did not change, (4.7+/-0.4 to 4.6+/-0.4 pmol/min per mm), however, there was a 60% increase in H flux (6.6+/-0.3 to 10.8+/-0.3 pmol/min per mm, P < 0.01). In OMCDs from acidotic animals, and in OMCDs incubated in acid in vitro, there was a higher basal rate and a further increase in HCO3- absorption (16.7+/-0.4 to 21.3+/-0.3 pmol/min per mm, P < 0.01) because of increased H flux (11.5+/-0.3 to 15.7+/-0.2 pmol/min per mm, P < 0.01) without any change in H,K flux (5.4+/-0.3 to 5.6+/-0.3 pmol/min per mm). These data indicate that HCO3- absorption (H+ secretion) in OMCD is stimulated by metabolic acidosis in vivo and in vitro by an increase in H+-ATPase-sensitive HCO3- absorption. The mechanism of adaptation may involve increased synthesis and exocytosis to the apical membrane of proton pumps. This adaptation helps maintain homeostasis during metabolic acidosis.
S Tsuruoka, G J Schwartz
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 135 | 28 |
51 | 19 | |
Citation downloads | 55 | 0 |
Totals | 241 | 47 |
Total Views | 288 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.