Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 2 patents
50 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119285

Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients.

T Niwa, T Katsuzaki, S Miyazaki, T Miyazaki, Y Ishizaki, F Hayase, N Tatemichi, and Y Takei

Nagoya University, Daiko Medical Center, Japan.

Find articles by Niwa, T. in: PubMed | Google Scholar

Nagoya University, Daiko Medical Center, Japan.

Find articles by Katsuzaki, T. in: PubMed | Google Scholar

Nagoya University, Daiko Medical Center, Japan.

Find articles by Miyazaki, S. in: PubMed | Google Scholar

Nagoya University, Daiko Medical Center, Japan.

Find articles by Miyazaki, T. in: PubMed | Google Scholar

Nagoya University, Daiko Medical Center, Japan.

Find articles by Ishizaki, Y. in: PubMed | Google Scholar

Nagoya University, Daiko Medical Center, Japan.

Find articles by Hayase, F. in: PubMed | Google Scholar

Nagoya University, Daiko Medical Center, Japan.

Find articles by Tatemichi, N. in: PubMed | Google Scholar

Nagoya University, Daiko Medical Center, Japan.

Find articles by Takei, Y. in: PubMed | Google Scholar

Published March 15, 1997 - More info

Published in Volume 99, Issue 6 on March 15, 1997
J Clin Invest. 1997;99(6):1272–1280. https://doi.org/10.1172/JCI119285.
© 1997 The American Society for Clinical Investigation
Published March 15, 1997 - Version history
View PDF
Abstract

To investigate the role of the Maillard reaction in the pathogenesis of diabetic complications, we produced several clones of monoclonal antibodies against advanced glycation end products (AGEs) by immunizing mice with AGE-modified keyhole limpet hemocyanin, and found that one clone (AG-1) of the anti-AGE antibodies reacted specifically with imidazolones A and B, novel AGEs. Thus, the imidazolones, which are the reaction products of the guanidino group of arginine with 3-deoxyglucosone (3-DG), a reactive intermediate of the Maillard reaction, were found to be common epitopes of AGE-modified proteins produced in vitro. We determined the erythrocyte levels of imidazolone in diabetic patients using ELISA with the monoclonal anti-imidazolone antibody. The imidazolone levels in the erythrocytes of diabetic patients were found to be significantly increased as compared with those of healthy subjects. Then we studied the localization of imidazolone in the kidneys and aortas obtained from diabetic patients by immunohistochemistry using the antibody. Specific imidazolone immunoreactivity was detected in nodular lesions and expanded mesangial matrix of glomeruli, and renal arteries in an advanced stage of diabetic nephropathy, as well as in atherosclerotic lesions of aortas. This study first demonstrates the localization of imidazolone in the characteristic lesions of diabetic nephropathy and atherosclerosis. These results, taken together with a recent demonstration of increased serum 3-DG levels in diabetes, strongly suggest that imidazolone produced by 3-DG may contribute to the progression of long-term diabetic complications such as nephropathy and atherosclerosis.

Version history
  • Version 1 (March 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
50 readers on Mendeley
See more details