Astrocytomas are among the most common brain tumors that are usually fatal in their malignant form. They appear to progress without significant impedance from the immune system, despite the presence of intratumoral T cell infiltration. To date, this has been thought to be the result of T cell immunosuppression induced by astrocytoma-derived cytokines. Here, we propose that cell contact-mediated events also play a role, since we demonstrate the in vivo expression of Fas ligand (FasL/CD95L) by human astrocytoma and the efficient killing of Fas-bearing cells by astrocytoma lines in vitro and by tumor cells ex vivo. Functional FasL is expressed by human, mouse, and rat astrocytoma and hence may be a general feature of this nonlymphoid tumor. In the brain, astrocytoma cells can potentially deliver a death signal to Fas+ cells which include infiltrating leukocytes and, paradoxically, astrocytoma cells themselves. The expression of FasL by astrocytoma cells may extend the processes that are postulated to occur in normal brain to maintain immune privilege, since we also show FasL expression by neurons. Overall, our findings suggest that FasL-induced apoptosis by astrocytoma cells may play a significant role in both immunosuppression and the regulation of tumor growth within the central nervous system.
P Saas, P R Walker, M Hahne, A L Quiquerez, V Schnuriger, G Perrin, L French, E G Van Meir, N de Tribolet, J Tschopp, P Y Dietrich
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 215 | 24 |
79 | 27 | |
Citation downloads | 63 | 0 |
Totals | 357 | 51 |
Total Views | 408 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.