Wild-type (Agt+/+) and homozygous angiotensinogen deletion mutant (Agt-/-) littermates were placed on normal (NS) or low Na diet (LS) for 2 weeks. Plasma aldosterone levels (P(aldo)) were comparable during NS, and similarly elevated during LS in Agt+/+ and Agt-/-. Moreover, in both, the elevation in P(aldo) was accompanied by marked increase in adrenal zona glomerulosa cells and adrenal P450aldo mRNA. Agt-/- mice were distinguished from Agt+/+ mice by their higher plasma K level, by approximately 1.5 and approximately 3.8 mEq/liter during NS and LS, respectively. Within the Agt-/- group, P(aldo) was directly proportional to plasma K. The importance of K for the hyperaldosteronism during dietary Na restriction was verified by the observation that superimposition of K restriction led to hypotension in Agt+/+ and uniform death in Agt-/- mice along with a reduction in P(aldo) by 75 and 90%, respectively. Thus, suppression of potassium, but not angiotensin, led to a marked attenuation of hyperaldosteronism during dietary Na restriction. Therefore, (a) a powerful angiotensin-independent mechanism exists for the hyperaldosteronism during LS; (b) high K is a central component of this mechanism; (c) contrary to current belief, the tonic effect of high K on aldosterone synthesis and release does not require an intact renin-angiotensin system; and (d) normally, intermediary feedback signals for hyperaldosteronism, i.e., both hypotension and high K, are effectively masked by aldosterone actions.
S Okubo, F Niimura, H Nishimura, F Takemoto, A Fogo, T Matsusaka, I Ichikawa
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 176 | 19 |
61 | 35 | |
Citation downloads | 64 | 0 |
Totals | 301 | 54 |
Total Views | 355 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.