Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Diet-induced obese mice develop peripheral, but not central, resistance to leptin.
M Van Heek, … , C D Strader, H R Davis Jr
M Van Heek, … , C D Strader, H R Davis Jr
Published February 1, 1997
Citation Information: J Clin Invest. 1997;99(3):385-390. https://doi.org/10.1172/JCI119171.
View: Text | PDF
Research Article Article has an altmetric score of 9

Diet-induced obese mice develop peripheral, but not central, resistance to leptin.

  • Text
  • PDF
Abstract

Leptin administration reduces obesity in leptin-deficient ob/ob mice; its effects in obese humans, who have high circulating leptin levels, remain to be determined. This longitudinal study was designed to determine whether diet-induced obesity in mice produces resistance to peripheral and/or central leptin treatment. Obesity was induced in two strains of mice by exposure to a 45% fat diet. Serum leptin increased in proportion to body weight (P < 0.00001). Whereas C57BL/6 mice initially responded to peripherally administered leptin with a marked decrease in food intake, leptin resistance developed after 16 d on high fat diet; mice on 10% fat diet retained leptin sensitivity. In AKR mice, peripheral leptin significantly decreased food intake in both 10 and 45% fat-fed mice after 16 d of dietary treatment. However, after 56 d, both groups became resistant to peripherally administered leptin. Central administration of leptin to peripherally leptin-resistant AKR mice on 45% fat diet resulted in a robust response to leptin, with a dose-dependent decrease in food intake (P < 0.00001) and body weight (P < 0.0001) after a single intracerebroventricular infusion. These data demonstrate that, in a diet-induced obesity model, mice exhibit resistance to peripherally administered leptin, while retaining sensitivity to centrally administered leptin.

Authors

M Van Heek, D S Compton, C F France, R P Tedesco, A B Fawzi, M P Graziano, E J Sybertz, C D Strader, H R Davis Jr

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 999 264
PDF 151 133
Citation downloads 69 0
Totals 1,219 397
Total Views 1,616
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
Referenced in 9 patents
278 readers on Mendeley
See more details