Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 38 patents
125 readers on Mendeley
  • Article usage
  • Citations to this article (383)

Advertisement

Research Article Free access | 10.1172/JCI119125

Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels.

P L Golden, T J Maccagnan, and W M Pardridge

Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Golden, P. in: PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Maccagnan, T. in: PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA.

Find articles by Pardridge, W. in: PubMed | Google Scholar

Published January 1, 1997 - More info

Published in Volume 99, Issue 1 on January 1, 1997
J Clin Invest. 1997;99(1):14–18. https://doi.org/10.1172/JCI119125.
© 1997 The American Society for Clinical Investigation
Published January 1, 1997 - Version history
View PDF
Abstract

The peripheral production of leptin by adipose tissue and its putative effect as a signal of satiety in the central nervous system suggest that leptin gains access to the regions of the brain regulating energy balance by crossing the brain capillary endothelium, which constitutes the blood-brain barrier in vivo. The present experiments characterize the binding and internalization of mouse recombinant leptin in isolated human brain capillaries, an in vitro model of the human blood-brain barrier. Incubation of 125I-leptin with isolated human brain capillaries resulted in temperature-dependent binding: at 37 degrees C, approximately 65% of radiolabeled leptin was bound per milligram of capillary protein. Two-thirds of the bound radioactivity was resistant to removal by acid wash, demonstrating endocytosis of 125I-leptin into capillary cells. At 4 degrees C, binding to isolated capillaries was reduced to approximately 23%/mg of protein, the majority of which was acid wash resistant. Binding of 125I-leptin to brain capillary endothelial plasma membranes was saturable, described by a two-site binding model with a high-affinity dissociation constant of 5.1+/-2.8 nM and maximal binding capacity of 0.34+/-0.16 pmol/mg of membrane protein. Addition of porcine insulin or insulin-like growth factor at a final concentration of 100 nM had a negligible effect on leptin binding. These results provide evidence for a leptin receptor that mediates saturable, specific, temperature-dependent binding and endocytosis of leptin at the human blood-brain barrier.

Version history
  • Version 1 (January 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (383)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 38 patents
125 readers on Mendeley
See more details