Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta2-microglobulin (beta2m) double transgenic mice with disrupted mouse beta2m.
S D Khare, … , H S Luthra, C S David
S D Khare, … , H S Luthra, C S David
Published December 15, 1996
Citation Information: J Clin Invest. 1996;98(12):2746-2755. https://doi.org/10.1172/JCI119100.
View: Text | PDF
Research Article

HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human beta2-microglobulin (beta2m) double transgenic mice with disrupted mouse beta2m.

  • Text
  • PDF
Abstract

MHC class I allele, HLA-B27, is strongly associated with a group of human diseases called spondyloarthropathies. Some of these diseases have an onset after an enteric or genitourinary infection. In the present study, we describe spontaneous disease in HLA-B27 transgenic mice where endogenous beta2-microglobulin (beta2m) gene was replaced with transgenic human beta2m gene. These mice showed cell surface expression of HLA-B27 similar to that of human peripheral blood mononuclear cells. In addition, free heavy chains (HCs) of HLA-B27 were also expressed on thymic epithelium and on a subpopulation of B27-expressing PBLs. These mice developed spontaneous arthritis and nail changes in the rear paws. Arthritis occurred primarily in male animals and only when mice were transferred from the pathogen-free barrier facility to the conventional area. Transgenic mice expressing HLA-B27 with mouse beta2m have undetectable levels of free HCs on the cell surface and do not develop arthritis. In vivo treatment with anti-HC-specific antibody delayed the onset of disease. Our data demonstrate specific involvement of HLA-B27 'free' HCs in the disease process.

Authors

S D Khare, J Hansen, H S Luthra, C S David

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 231 51
PDF 57 42
Citation downloads 70 0
Totals 358 93
Total Views 451
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts