Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119047

Estrogen suppresses activation but enhances formation phase of osteogenic response to mechanical stimulation in rat bone.

C J Jagger, J W Chow, and T J Chambers

Department of Histopathology, St. George's Hospital Medical School, London, United Kingdom.

Find articles by Jagger, C. in: PubMed | Google Scholar

Department of Histopathology, St. George's Hospital Medical School, London, United Kingdom.

Find articles by Chow, J. in: PubMed | Google Scholar

Department of Histopathology, St. George's Hospital Medical School, London, United Kingdom.

Find articles by Chambers, T. in: PubMed | Google Scholar

Published November 15, 1996 - More info

Published in Volume 98, Issue 10 on November 15, 1996
J Clin Invest. 1996;98(10):2351–2357. https://doi.org/10.1172/JCI119047.
© 1996 The American Society for Clinical Investigation
Published November 15, 1996 - Version history
View PDF
Abstract

We used a model whereby mechanical stimulation induces bone formation in rat caudal vertebrae, to test the effect of estrogen on this osteogenic response. Unexpectedly, estrogen administered daily throughout the experiments (8-11 d) suppressed, and ovariectomy enhanced, mechanically induced osteogenesis. Osteogenesis was unaffected by the resorption-inhibitor pamidronate, suggesting that the suppression of bone formation caused by estrogen was not due to suppression of resorption. We found that estrogen did not significantly reduce the proportion of osteocytes that were induced by mechanical stimulation to express c-fos and IGF-I mRNA; and estrogen suppressed mechanically induced osteogenesis whether administration was started 24 h before or 24 h after loading. This suggests that estrogen acts primarily not on the strain-sensing mechanism itself, but on the osteogenic response to signals generated by strain-sensitive cells. We also found that when estrogen administration was started 3 d after mechanical stimulation, by which time osteogenesis is established, estrogen augmented the osteogenic response. This data is consistent with in vitro evidence for estrogen responsiveness in two phenotypically distinct bone cell types: stromal cells, whose functional activities are suppressed, and osteoblasts, which are stimulated, by estrogen.

Version history
  • Version 1 (November 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts