We have identified a previously undescribed intrinsic cardiac adrenergic (ICA) cell type in rodent and human heart. Northern and Western blot analyses demonstrated that ICA cell isolates contain mRNA and protein of enzymes involved in catecholamine biosynthesis. Radioenzymatic catecholamine assays also revealed that the catecholamine profile of adult rat ICA cell isolates differed from that of sympathetic neurons. Unlike sympathetic neuronal cells, isolated ICA cells have abundant clear vesicles on electron microscopy. Endogenous norepinephrine and epinephrine constitutively released by ICA cells in vitro affect the spontaneous beating rate of neonatal rat cardiac myocytes in culture. Finally, ICA cells could be identified in human fetal hearts at a developmental stage before sympathetic innervation of the heart has been documented to occur. These findings support the concept that these cells constitute an ICA signaling system capable of participating in cardiac regulation that appears to be independent of sympathetic innervation.
M H Huang, D S Friend, M E Sunday, K Singh, K Haley, K F Austen, R A Kelly, T W Smith
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 431 | 35 |
97 | 37 | |
Citation downloads | 44 | 0 |
Totals | 572 | 72 |
Total Views | 644 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.