Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Paradoxical inhibition of cardiac lipid peroxidation in cancer patients treated with doxorubicin. Pharmacologic and molecular reappraisal of anthracycline cardiotoxicity.
G Minotti, … , G Liberi, N Gentiloni
G Minotti, … , G Liberi, N Gentiloni
Published August 1, 1996
Citation Information: J Clin Invest. 1996;98(3):650-661. https://doi.org/10.1172/JCI118836.
View: Text | PDF
Research Article

Paradoxical inhibition of cardiac lipid peroxidation in cancer patients treated with doxorubicin. Pharmacologic and molecular reappraisal of anthracycline cardiotoxicity.

  • Text
  • PDF
Abstract

Anticancer therapy with doxorubicin (DOX) and other quinone anthracyclines is limited by severe cardiotoxicity, reportedly because semiquinone metabolites delocalize Fe(II) from ferritin and generate hydrogen peroxide, thereby promoting hydroxyl radical formation and lipid peroxidation. Cardioprotective interventions with antioxidants or chelators have nevertheless produced conflicting results. To investigate the role and mechanism(s) of cardiac lipid peroxidation in a clinical setting, we measured lipid conjugated dienes (CD) and hydroperoxides in blood plasma samples from the coronary sinus and femoral artery of nine cancer patients undergoing intravenous treatments with DOX. Before treatment, CD were unexpectedly higher in coronary sinus than in femoral artery (342 +/- 131 vs 112 +/- 44 nmol/ml, mean +/- SD; P < 0.01), showing that cardiac tissues were spontaneously involved in lipid peroxidation. This was not observed in ten patients undergoing cardiac catheterization for the diagnosis of arrhythmias or valvular dysfunctions, indicating that myocardial lipid peroxidation was specifically increased by the presence of cancer. The infusion of a standard dose of 60 mg DOX/m(2) rapidly ( approximately 5 min) abolished the difference in CD levels between coronary sinus and femoral artery (134 +/- 95 vs 112 +/- 37 nmol/ml); moreover, dose fractionation studies showed that cardiac release of CD and hydroperoxides decreased by approximately 80% in response to the infusion of as little as 13 mg DOX/m(2). Thus, DOX appeared to inhibit cardiac lipid peroxidation in a rather potent manner. Corollary in vitro experiments were performed using myocardial biopsies from patients undergoing aortocoronary bypass grafting. These experiments suggested that the spontaneous exacerbation of lipid peroxidation probably involved preexisting Fe(II) complexes, which could not be sequestered adequately by cardiac isoferritins and became redox inactive when hydrogen peroxide was included to simulate DOX metabolism and hydroxyl radical formation. Collectively, these in vitro and in vivo studies provide novel evidence for a possible inhibition of cardiac lipid peroxidation in DOX-treated patients. Other processes might therefore contribute to the cardiotoxicity of DOX.

Authors

G Minotti, C Mancuso, A Frustaci, A Mordente, S A Santini, A M Calafiore, G Liberi, N Gentiloni

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 145 17
PDF 55 24
Citation downloads 51 0
Totals 251 41
Total Views 292
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts