Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 3 patents
45 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118816

Downregulation of vascular endothelial growth factor receptors by tumor necrosis factor-alpha in cultured human vascular endothelial cells.

C Patterson, M A Perrella, W O Endege, M Yoshizumi, M E Lee, and E Haber

Cardiovascular Biology Laboratory, Harvard School of Public Health, Harvard Medical School, Massachusetts 02115, USA.

Find articles by Patterson, C. in: JCI | PubMed | Google Scholar

Cardiovascular Biology Laboratory, Harvard School of Public Health, Harvard Medical School, Massachusetts 02115, USA.

Find articles by Perrella, M. in: JCI | PubMed | Google Scholar

Cardiovascular Biology Laboratory, Harvard School of Public Health, Harvard Medical School, Massachusetts 02115, USA.

Find articles by Endege, W. in: JCI | PubMed | Google Scholar

Cardiovascular Biology Laboratory, Harvard School of Public Health, Harvard Medical School, Massachusetts 02115, USA.

Find articles by Yoshizumi, M. in: JCI | PubMed | Google Scholar

Cardiovascular Biology Laboratory, Harvard School of Public Health, Harvard Medical School, Massachusetts 02115, USA.

Find articles by Lee, M. in: JCI | PubMed | Google Scholar

Cardiovascular Biology Laboratory, Harvard School of Public Health, Harvard Medical School, Massachusetts 02115, USA.

Find articles by Haber, E. in: JCI | PubMed | Google Scholar

Published July 15, 1996 - More info

Published in Volume 98, Issue 2 on July 15, 1996
J Clin Invest. 1996;98(2):490–496. https://doi.org/10.1172/JCI118816.
© 1996 The American Society for Clinical Investigation
Published July 15, 1996 - Version history
View PDF
Abstract

Vascular endothelial growth factor (VEGF) potently stimulates angiogenesis, whereas TNF-alpha has both pro- and anti-angiogenic activity. By measuring thymidine uptake, we found that TNF-alpha blocked a 2.3-fold increase in DNA synthesis induced by VEGF in human endothelial cells. To explore the possibility that the two interact to regulate endothelial cell proliferation, we examined the effect of TNF-alpha on VEGF receptor expression. In venous and arterial endothelial cells, TNF-alpha potently reduced mRNA transcripts of the two VEGF receptors (KDR/flk-1 and flt-1) in a dose- and time-dependent fashion. TNF-alpha at 1 ng/ml induced maximal inhibition of mRNA expression, which fell by approximately 70% after 24 h. TNF-alpha treatment did not significantly affect the KDR/flk-1 half-life but did decrease its rate of transcription to 40% of control. The decrease in KDR/flk-1 mRNA depended partially on new protein synthesis and was abolished by phorbol ester pretreatment. TNF-alpha decreased the amount of 35S-labeled KDR/flk-1 immunoprecipitated by an antibody specific for KDR/flk-1 to 18% of control. We conclude that TNF-alpha downregulates expression of both VEGF receptors in human endothelial cells and that this effect is transcriptional (at least for KDR/flk-1). These data support the hypothesis that TNF-alpha exerts its antiangiogenic effect in part by modulating the VEGF-specific angiogenic pathway.

Version history
  • Version 1 (July 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 3 patents
45 readers on Mendeley
See more details