Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (22)

Advertisement

Research Article Free access | 10.1172/JCI118801

Liver cirrhosis induces renal and liver phospholipase A2 activity in rats.

B S Vishwanath, F J Frey, G Escher, J Reichen, and B M Frey

Division of Nephrology, Department of Medicine, University of Berne, Switzerland.

Find articles by Vishwanath, B. in: JCI | PubMed | Google Scholar

Division of Nephrology, Department of Medicine, University of Berne, Switzerland.

Find articles by Frey, F. in: JCI | PubMed | Google Scholar

Division of Nephrology, Department of Medicine, University of Berne, Switzerland.

Find articles by Escher, G. in: JCI | PubMed | Google Scholar

Division of Nephrology, Department of Medicine, University of Berne, Switzerland.

Find articles by Reichen, J. in: JCI | PubMed | Google Scholar

Division of Nephrology, Department of Medicine, University of Berne, Switzerland.

Find articles by Frey, B. in: JCI | PubMed | Google Scholar

Published July 15, 1996 - More info

Published in Volume 98, Issue 2 on July 15, 1996
J Clin Invest. 1996;98(2):365–371. https://doi.org/10.1172/JCI118801.
© 1996 The American Society for Clinical Investigation
Published July 15, 1996 - Version history
View PDF
Abstract

Maintenance of renal function in liver cirrhosis requires increased synthesis of arachidonic acid derived prostaglandin metabolites. Arachidonate metabolites have been reported to be involved in modulation of liver damage. The purpose of the present study was to establish whether the first enzyme of the prostaglandin cascade synthesis, the phospholipase A2(PLA2) is altered in liver cirrhosis induced by bile duct excision. The mRNA of PLA2(group I and II) and annexin-I a presumptive inhibitor of PLA2 enzyme was measured by PCR using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an internal standard. The mean mRNA ratio of group II PLA2/GAPDH was increased in liver tissue by 126% (P < 0.001) and in kidney tissue by 263% (P < 0.006) following induction of liver cirrhosis. The increase in group II PLA2 mRNA in cirrhotic animals was reflected by an increase in PLA2 protein and enzyme activity in both liver and kidney tissues. Since the mRNA of group I PLA2 was not detectable and Group IV PLA2 activity measured in liver and kidney tissue samples was very low and not changed following induction of cirrhosis, it is likely that the major PLA2 activity measured in liver and kidney corresponds to group II PLA2 enzyme. The mean mRNA ratio of annexin-I/GAPDH was increased in liver tissue by 115% (P < 0.05) but unchanged in kidney tissue following induction of cirrhosis. The protein content of annexin-I and -V were not affected by bile duct excision in liver and kidney tissue indicating that upregulation of group II PLA2 activity was not due to downregulation of annexin-I or -V. Group II PLA2 activity of glomerular mesangial cells stimulated by interleukin-1 beta was enhanced by bile juice and various bile salts. In conclusion, activity of group II PLA2 is upregulated partly due to enhanced transcription and translation in cirrhosis and is furthermore augmented by elevated levels of bile salts.

Version history
  • Version 1 (July 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (22)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts