Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (75)

Advertisement

Research Article Free access | 10.1172/JCI118759

A novel mechanism of glucocorticoid-induced immune suppression: the inhibiton of T cell-mediated terminal maturation of a murine dendritic cell line.

T Kitajima, K Ariizumi, P R Bergstresser, and A Takashima

Department of Dermatology, University of Texas Southwestern Medical Center, Dallas 75235, USA.

Find articles by Kitajima, T. in: PubMed | Google Scholar

Department of Dermatology, University of Texas Southwestern Medical Center, Dallas 75235, USA.

Find articles by Ariizumi, K. in: PubMed | Google Scholar

Department of Dermatology, University of Texas Southwestern Medical Center, Dallas 75235, USA.

Find articles by Bergstresser, P. in: PubMed | Google Scholar

Department of Dermatology, University of Texas Southwestern Medical Center, Dallas 75235, USA.

Find articles by Takashima, A. in: PubMed | Google Scholar

Published July 1, 1996 - More info

Published in Volume 98, Issue 1 on July 1, 1996
J Clin Invest. 1996;98(1):142–147. https://doi.org/10.1172/JCI118759.
© 1996 The American Society for Clinical Investigation
Published July 1, 1996 - Version history
View PDF
Abstract

Working with the murine epidermal-derived dendritic cell (DC) line XS52, we have observed previously that antigen-specific interaction with T cells stimulates their "terminal maturation" into fully professional DC. In this study we examined the impact of dexamethasone (DEX) on this T cell-induced event. When added to cocultures of XS52 DC and the KLH-specific Th1 clone HDK-1 in the presence of antigen, DEX at relatively low concentrations (10(-9)-10(-7) M) prevented substantially or completely each of the changes that typify terminal maturation, including (a) secretion of relatively large amounts of IL-1beta, IL-6, and TNFalpha; (b) loss of CD115 (colony-stimulating factor-1 receptor) expression and proliferative responsiveness to colony-stimulating factor-1; and (c) elevated expression of CD86 (B7-2). XS52 cells also underwent terminal maturation upon exposure to lipopolysaccharide alone, and DEX also inhibited effectively each of the same changes, indicating that DC can serve as the direct target of DEX. By contrast, DEX inhibited XS52 DC-stimulated IL-2 secretion by HDK-1 T cells, but not other changes that accompany T cell activation, including the secretion of IFNgamma and TNFalpha and the elevated expression of CD25, CD28, and CD44. These results reveal a new immunosuppressive mechanism of glucocorticoid action, that is, direct inhibition of T cell-mediated terminal maturation by DC.

Version history
  • Version 1 (July 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (75)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts