Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na+-HCO3– cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na+-HCO3– cotransport activity has not been detected in mammalian lens epithelia, cell pH (pHi) measurements revealed the presence of Cl–-independent, electrogenic Na+-HCO3– cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pHi recovery from acid load in the presence of HCO3–/CO2 was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO3– transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow.
Tomohiko Usui, Masumi Hara, Hiroaki Satoh, Nobuo Moriyama, Humie Kagaya, Shiro Amano, Tetsuro Oshika, Yasuo Ishii, Nobuhiro Ibaraki, Chiaki Hara, Motoei Kunimi, Eisei Noiri, Kazuhisa Tsukamoto, Jun Inatomi, Hayato Kawakami, Hitoshi Endou, Takashi Igarashi, Astuo Goto, Toshiro Fujita, Makoto Araie, George Seki
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 418 | 121 |
57 | 20 | |
Figure | 324 | 7 |
Table | 33 | 0 |
Citation downloads | 42 | 0 |
Totals | 874 | 148 |
Total Views | 1,022 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.