Alpha-Melanocyte-stimulating hormone (MSH) is a potent anti-inflammatory agent in many models of inflammation, suggesting that it inhibits a critical step common to different forms of inflammation. We showed previously that alpha-MSH inhibits nitric oxide (NO) production in cultured macro-phages. To determine how alpha-MSH acts in vivo, we induced acute hepatic inflammation by administering endotoxin (LPS) to mice pretreated with Corynebacterium parvum, alpha-MSH prevented liver inflammation even when given 30 min after LPS administration. To determine the mechanisms of action of alpha-MSH, we tested its influence on NO, infiltrating inflammatory cells, cytokines, and chemokines. Alpha-MSH inhibited systemic NO production, hepatic neutrophil infiltration, and increased hepatic mRNA abundance for TNF alpha, and the neutrophil and monocyte chemokines (KC/IL-8 and MCP-1). We conclude that alpha-MSH prevents LPS-induced hepatic inflammation by inhibiting production of chemoattractant chemokines which then modulate infiltration of inflammatory cells. Thus, alpha-MSH has an effect very early in the inflammatory cascade.
H Chiao, S Foster, R Thomas, J Lipton, R A Star
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 250 | 32 |
61 | 22 | |
Citation downloads | 62 | 0 |
Totals | 373 | 54 |
Total Views | 427 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.