Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons.
Y Li, C Owyang
Y Li, C Owyang
Published March 15, 1996
Citation Information: J Clin Invest. 1996;97(6):1463-1470. https://doi.org/10.1172/JCI118568.
View: Text | PDF
Research Article Article has an altmetric score of 3

Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons.

  • Text
  • PDF
Abstract

In this study we tested the hypothesis that peptone in the intestine stimulates the secretion of the CCK-releasing peptide (CCK-RP) which mediates CCK secretion, and examined the enteric neural circuitry responsible for CCK-RP secretion. We used a "donor-recipient" rat intestinal perfusion model to quantify the CCK-RP secreted in response to nutrient stimulation. Infusion of concentrated intestinal perfusate collected from donor rat perfused with 5% peptone caused a 62 +/- 10% increase in protein secretion and an elevation of plasma CCK levels to 6.9 +/- 1.8 pM in the recipient rat. The stimulatory effect of the intestinal washings was abolished when the donor rats were pretreated with atropine or hexamethonium but not with guanethidine or vagotomy. Mucosal application of lidocaine but not serosal application of benzalkonium chloride which ablates the myenteric neurons in the donor rats also abolished the stimulatory action of the intestinal washings. Furthermore, treatment of the donor rats with a 5HT3 antagonist and a substance P antagonist also prevented the secretion of CCK-RP. These observations suggest that peptone in the duodenum stimulates serotonin release which activates the sensory substance P neurons in the submucous plexus. Signals are then transmitted to cholinergic interneurons and to epithelial CCK-RP containing cells via cholinergic secretomotor neurons. This enteric neural circuitry which is responsible for the secretion of CCK-RP may in turn play an important role in the postprandial release of CCK.

Authors

Y Li, C Owyang

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 140 49
PDF 57 22
Citation downloads 48 0
Totals 245 71
Total Views 316
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
15 readers on Mendeley
See more details