Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Modulation of very low density lipoprotein production and clearance contributes to age- and gender- dependent hyperlipoproteinemia in apolipoprotein E3-Leiden transgenic mice.
B J van Vlijmen, … , M H Hofker, L M Havekes
B J van Vlijmen, … , M H Hofker, L M Havekes
Published March 1, 1996
Citation Information: J Clin Invest. 1996;97(5):1184-1192. https://doi.org/10.1172/JCI118532.
View: Text | PDF
Research Article

Modulation of very low density lipoprotein production and clearance contributes to age- and gender- dependent hyperlipoproteinemia in apolipoprotein E3-Leiden transgenic mice.

  • Text
  • PDF
Abstract

Apolipoprotein E3-Leiden (APOE*3-Leiden) transgenic mice have been studied to identify factors modulating chylomicron and VLDL remnant lipoprotein metabolism. Transient elevated levels of VLDL/LDL-sized lipoproteins occurred in these mice with maximal levels during the period of rapid growth (optimum at 45 d of age). After about 100 d of age, serum cholesterol and triglyceride levels stabilized to slightly elevated levels as compared to control mice. The expression of the APOE*3-Leiden transgene was not age-dependent. In young mice the in vivo hepatic production of VLDL-triglycerides was 50% increased as compared to older mice. This is sustained by in vivo VLDL-apo B turnover studies showing increased (75%) VLDL-apo B secretion rates in young mice, whereas the VLDL-apo B clearance rate appeared not to be age dependent. On a high fat/cholesterol diet, females displayed significantly higher cholesterol levels than males (10 versus 7.0 mmol/liter, respectively). Serum levels of VLDL/LDL sized lipoproteins increased upon administration of estrogens, whereas administration of testosterone gave the opposite result. As compared to male mice, in female mice the hepatic VLDL-triglyceride production rate was significantly elevated. Injection of estrogen in males also resulted in increased VLDL-triglyceride production, although not statistically significant. In vivo VLDL-apo B turnover experiments showed that the VLDL secretion rate tended to be higher in females. Although, the fractional catabolic rate of VLDL-apo B is not different between males and females, administration of estrogens in males resulted in a decreased clearance rate of VLDL, whereas administration of testosterone in females resulted in an increased clearance rate of VLDL. The latter presumably due to an inhibiting effect of testosterone on the expression of the APOE*3-Leiden transgene. We conclude that hyperlipidemia in APOE*3-Leiden transgenic mice is strongly affected by age via its effect on hepatic VLDL production rate, whereas gender influences hyperlipidemia by modulating both hepatic VLDL production and clearance rate.

Authors

B J van Vlijmen, H B van 't Hof, M J Mol, H van der Boom, A van der Zee, R R Frants, M H Hofker, L M Havekes

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts