Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury.
K J Kelly, … , J C Gutierrez-Ramos, J V Bonventre
K J Kelly, … , J C Gutierrez-Ramos, J V Bonventre
Published February 15, 1996
Citation Information: J Clin Invest. 1996;97(4):1056-1063. https://doi.org/10.1172/JCI118498.
View: Text | PDF
Research Article Article has an altmetric score of 3

Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury.

  • Text
  • PDF
Abstract

Studies in the rat have pointed to a role for intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of acute tubular necrosis. These studies used antibodies, which may have nonspecific effects. We report that renal ICAM-1 mRNA levels and systemic levels of the cytokines IL-1 and TNF-alpha increase 1 h after ischemia/ reperfusion in the mouse. We sought direct proof for a critical role for ICAM-1 in the pathophysiology of ischemic renal failure using mutant mice genetically deficient in ICAM-1. ICAM-1 is undetectable in mutant mice in contrast with normal mice, in which ICAM-1 is prominent in the endothelium of the vasa recta. Mutant mice are protected from acute renal ischemic injury as judged by serum creatinine, renal histology, and animal survival . Renal leukocyte infiltration, quantitated morphologically and by measuring tissue myeloperoxidase, was markedly less in ICAM-1-deficient than control mice. To evaluate whether prevention of neutrophil infiltration could be responsible for the protection observed in the mutant mice, we treated normal mice with antineutrophil serum to reduce absolute neutrophil counts to < 100 cells/mm3. These neutrophil-depleted animals were protected against ischemic renal failure. Anti-1CAm-1 antibody protected normal mice against renal ischemic injury but did not provide additional protection to neutrophil-depleted animals. Thus, ICAM-1 is a key mediator of ischemic acute renal failure likely acting via potentiation of neutrophilendothelial interactions.

Authors

K J Kelly, W W Williams Jr, R B Colvin, S M Meehan, T A Springer, J C Gutierrez-Ramos, J V Bonventre

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 546 81
PDF 69 62
Citation downloads 47 0
Totals 662 143
Total Views 805
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 16 patents
133 readers on Mendeley
See more details