Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Digoxin reduces beta-adrenergic contractile response in rabbit hearts. Ca(2+)-dependent inhibition of adenylyl cyclase activity via Na+/Ca2+ exchange.
K Nagai, … , T Tomita, S Sasayama
K Nagai, … , T Tomita, S Sasayama
Published January 1, 1996
Citation Information: J Clin Invest. 1996;97(1):6-13. https://doi.org/10.1172/JCI118407.
View: Text | PDF
Research Article

Digoxin reduces beta-adrenergic contractile response in rabbit hearts. Ca(2+)-dependent inhibition of adenylyl cyclase activity via Na+/Ca2+ exchange.

  • Text
  • PDF
Abstract

Whereas mobilization of intracellular Ca2+ stimulates neuronal adenylyl cyclase via Ca2+/calmodulin, mobilized Ca2+ directly inhibits adenylyl cyclase in other tissues. To determine the physiologic role of the Ca(2+)-dependent interaction between Na+/Ca2+ exchange and beta-adrenergic signal transduction in the intact heart, digoxin (0.3 mg/kg) was administered intravenously in rabbits. 30 min after the administration, digoxin impaired the peak left ventricular dP/dt response to dobutamine infusions by up to 38% as compared with control rabbits. This impairment was not caused by changes in either beta-adrenergic receptor number or in the functional activity of stimulatory guanine nucleotide-binding protein. It was associated with 33-36% reductions in basal and stimulated adenylyl cyclase activities. Animals treated with calcium gluconate (20 mg/kg/min for 30 min) also demonstrated similar reductions in adenylyl cyclase activities. In addition, increasing the free Ca2+ concentration progressively inhibited adenylyl cyclase activity in the control, digoxin-treated, and calcium gluconate-treated sarcolemma preparations in vitro. Moreover, digoxin and calcium gluconate pretreatment blunted the increase in cAMP in myocardial tissue after dobutamine infusion in vivo. Thus, digoxin rapidly reduces beta-adrenergic contractile response in rabbit hearts. This reduction may reflect an inhibition of adenylyl cyclase by Ca2+ mobilized via Na+/Ca2+ exchange.

Authors

K Nagai, T Murakami, T Iwase, T Tomita, S Sasayama

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 84 9
PDF 53 13
Citation downloads 51 0
Totals 188 22
Total Views 210
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts