Biliary proteins inhibiting or promoting cholesterol crystallization are assumed to play a major role in cholesterol gallstone pathogenesis. We now report a new group of biliary proteins that bind to cholesterol crystals, modify crystal morphology, and inhibit cholesterol crystallization. Various glycoprotein mixtures were extracted from abnormal human gallbladder bile using lectin affinity chromatography on concanavalin A, lentil, and Helix pomatia columns and were added to supersaturated model bile. Independent of the protein mixtures added, from the cholesterol crystals harvested, the same four GPs were isolated having molecular masses of 16, 28, 63, and 74 kD, respectively. Each protein was purified using preparative SDS-PAGE, and influence on cholesterol crystallization in model bile was tested at 10 microg/ml. Crystal growth was reduced by 76% (GP63), 65% (GP16), 55% (GP74), and 40% (GP28), respectively. Thus, these glycoproteins are the most potent biliary inhibitors of cholesterol crystallization known so far. Evidence that the inhibiting effect on cholesterol crystallization is mediated via protein-crystal interaction was further provided from scanning electron microscopy studies. Crystals grown in presence of inhibiting proteins showed significantly more ordered structures. Incidence of triclinic crystals and regular aggregates was shifted from 30 to 70% compared with controls. These observations may have important implications for understanding the role of biliary proteins in cholesterol crystallization and gallstone pathogenesis.
N Busch, F Lammert, H U Marschall, S Matern
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 115 | 0 |
57 | 23 | |
Scanned page | 204 | 2 |
Citation downloads | 40 | 0 |
Totals | 416 | 25 |
Total Views | 441 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.