Nitric oxide is reportedly involved in the regulation of several ovarian processes, yet the isoforms of nitric oxide synthase (NOS) expressed in the ovary are unknown. Our purpose was to identify and localize NOS isoenzymes in the rat ovary and to examine++ if mRNA expression of NOS isoenzymes change after gonadotropin stimulation. Using reverse transcriptase-PCR, we demonstrated that inducible (iNOS) and endothelial (eNOS), but not neuronal, NOS mRNAs are expressed in the ovary. In a gonadotropin-stimulated rat model, unstimulated ovaries had the highest levels of iNOS mRNA as quantified by ribonuclease protection assay. After gonadotropin injection, iNOS mRNA declined to undetectable levels in ovaries containing ovulatory follicles before increasing slighty in ovaries containing copora lutea. In situ hybridization studies localized iNOS to granulosa cells of secondary follicles and small antral follicles. Western blots of unstimulated ovaries demonstrated iNOS protein. In contrast to iNOS, eNOS mRNA levels, determined by quantitative PCR, increased after gonadotropin stimulation and peaked in ovaries containing ovulatory follicles before declining in the luteal phase. eNOS protein was localized to blood vessels in the ovary by immunohistochemistry. We conclude that two isoforms of NOS are expressed in the ovary and the mRNA levels for these isozymes are differentially regulated.
B J Van Voorhis, K Moore, P J Strijbos, S Nelson, S A Baylis, D Grzybicki, C P Weiner
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 126 | 7 |
51 | 21 | |
Figure | 0 | 2 |
Scanned page | 283 | 7 |
Citation downloads | 47 | 0 |
Totals | 507 | 37 |
Total Views | 544 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.