Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen.
J K Liao, … , C G Cote, P M Hassoun
J K Liao, … , C G Cote, P M Hassoun
Published December 1, 1995
Citation Information: J Clin Invest. 1995;96(6):2661-2666. https://doi.org/10.1172/JCI118332.
View: Text | PDF
Research Article

Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen.

  • Text
  • PDF
Abstract

Oxygen (O2) may regulate pulmonary vascular resistance through changes in endothelial nitric oxide (NO) production. To determine whether constitutive NO synthase (cNOS) is regulated by O2, we assessed cNOS expression and activity in bovine pulmonary artery endothelial cells exposed to different concentrations of O2. In a time-dependent manner, changes in O2 concentration from 95 to 3% produced a progressive decrease in cNOS mRNA and protein levels resulting in 4.8- and 4.3-fold reductions after 24h, respectively. This correlated with changes in cNOS activity as determined by nitrite measurements. Compared with 20% O2, cNOS activity was increased 1.5-fold in 95% O2 and decreased 1.9-fold in 3% O2. A decrease in O2 concentration from 94 to 3% shortened cNOS mRNA half-life from 46 to 24 h and caused a 20-fold repression of cNOS gene transcription. Treatment with cycloheximide produced a threefold increase in cNOS mRNA at all O2 concentrations, suggesting that cNOS mRNA expression is negatively regulated under basal condition. We conclude that O2 upregulates cNOS expression through transcriptional and post-transcriptional mechanisms. A decrease in cNOS activity in the presence of low O2 levels, therefore, may contribute to hypoxia-induced vasoconstriction in the pulmonary circulation.

Authors

J K Liao, J J Zulueta, F S Yu, H B Peng, C G Cote, P M Hassoun

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 279 6
PDF 48 22
Figure 0 1
Scanned page 256 3
Citation downloads 61 0
Totals 644 32
Total Views 676
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts