Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils. Attenuation of p47phox and p67phox membrane translocation as the mechanism.
W Chao, … , R G Spragg, R M Smith
W Chao, … , R G Spragg, R M Smith
Published December 1, 1995
Citation Information: J Clin Invest. 1995;96(6):2654-2660. https://doi.org/10.1172/JCI118331.
View: Text | PDF
Research Article

Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils. Attenuation of p47phox and p67phox membrane translocation as the mechanism.

  • Text
  • PDF
Abstract

Surfactant has been shown to inhibit the production of reactive oxygen intermediates by various cells including alveolar macrophages and peripheral blood neutrophils. Superoxide O2-. production by the respiratory burst oxidase in isolated plasma membranes prepared from PMA-treated human neutrophils was significantly attenuated by prior treatment with native porcine surfactant. The effect was concentration dependent with half-maximal inhibition seen at approximately 0.050 mg surfactant phospholipid/ml. Kinetic analyses of the membrane-bound enzyme prepared from neutrophils stimulated by PMA in the presence or absence of surfactant demonstrated that surfactant treatment led to a decrease in the maximal velocity of O2-. production when NADPH was used as substrate, but there was no effect on enzyme substrate affinity. Immunoblotting studies demonstrated that surfactant treatment induced a decrease in the association of two oxidase components, p47phox and p67phox, with the isolated plasma membrane. In contrast, surfactant treatment of the cells did not alter the phosphorylation of p47phox. A mixture of phospholipids (phosphatidylcholine and phosphatidylglycerol in a 7:3 ratio) showed similar inhibition of the PMA-induced O2-. generation. Taken together, these data suggest the mechanism of surfactant-induced inhibition of O2-. production by human neutrophils involves attenuation of translocation of cytosolic components of the respiratory burst oxidase to the plasma membrane. The phospholipid components of surfactant appear to play a significant role in this mechanism.

Authors

W Chao, R G Spragg, R M Smith

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts