The ability of whole serum to promote cell cholesterol efflux and the relationships between apoprotein and lipoprotein components of human serum efflux have been investigated previously (de la Llera Moya, M., V. Atger, J.L. Paul, N. Fournier, N. Moatti, P. Giral, K.E. Friday, and G.H. Rothblat. 1994. Arterioscler. Thromb. 14:1056-1065). We have now used this experimental system to study the selective effects of two human lipoprotein-related proteins, apoprotein AI (apo AI) and cholesteryl ester transfer protein (CETP) on cell cholesterol efflux, when these proteins are expressed in transgenic mice. The percent efflux values for cholesterol released in 4 h from Fu5AH donor cells to 5% sera from the different groups of mice were in the order: background = human apo AI transgenic (HuAITg) > human CETP transgenic (HuCETPTg) > human apo AI and CETP transgenic (HuAICETPTg) >> apo AI knockout mice. In each group of mice a strong, positive correlation (r2 ranging from 0.64 to 0.76) was found between efflux and HDL cholesterol concentrations. The slopes of these regression lines differed between groups of mice, indicating that the cholesterol acceptor efficiencies of the sera differed among groups. These differences in relative efficiencies can explain why cholesterol efflux was not proportional to the different HDL levels in the various groups of mice. We can conclude that: (a) HDL particles from HuAITg mice are less efficient as cholesterol acceptors than HDL from the background mice; (b) despite a lower average efflux due to lower HDL cholesterol concentrations, HDL particles are more efficient in the HuCETPTg mice than in the background mice; and (c) the coexpression of both human apo AI and CETP improves the efficiency of HDL particles in the HuAICETPTg mice when compared with the HuAITg mice. We also demonstrated that the esterification of the free cholesterol released from the cells by lecithin cholesterol acyltransferase in the serum was reduced in the HuAITg and AI knockout mice, whereas it was not different from background values in the two groups of mice expressing human CETP.
V Atger, M de la Llera Moya, M Bamberger, O Francone, P Cosgrove, A Tall, A Walsh, N Moatti, G Rothblat
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 145 | 1 |
72 | 23 | |
Scanned page | 332 | 2 |
Citation downloads | 41 | 0 |
Totals | 590 | 26 |
Total Views | 616 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.