A thiazide-sensitive Na-Cl cotransporter contributes importantly to mammalian salt homeostasis by mediating Na-Cl transport along the renal distal tubule. Although it has been accepted that thiazide-sensitive Na-Cl cotransport occurs predominantly along the distal convoluted tubule in rats and mice, sites of expression in the rabbit have been controversial. A commonly accepted model of rabbit distal nephron transport pathways identifies the connecting tubule, not the distal convoluted tubule, as the predominant site of thiazide-sensitive Na-Cl cotransport. The thiazide-sensitive Na-Cl cotransporter has been cloned recently. The present experiments were designed to localize sites of thiazide-sensitive Na-Cl cotransporter mRNA expression along the rabbit distal nephron. Nonradioactive in situ hybridization with a thiazide-sensitive Na-Cl cotransporter probe was combined with immunocytochemistry with an antibody that recognizes distal convoluted tubule cells and with a Na+/Ca2+ exchanger antibody that recognizes only connecting tubule cells. The results indicate that thiazide-sensitive Na-Cl cotransporter mRNA is highly expressed by cells of the distal convoluted tubule and not by connecting tubule cells. Segments that stain with the Na+/Ca2+ exchanger antibody (connecting tubules) do not demonstrate thiazide-sensitive Na-Cl cotransporter mRNA expression. We conclude that the predominant site of thiazide-sensitive Na-Cl cotransporter mRNA expression in rabbit distal nephron is the distal convoluted tubule and that sites of mRNA expression of electroneutral Na and Cl transport are similar in rabbits, rats, and mice.
S Bachmann, H Velázquez, N Obermüller, R F Reilly, D Moser, D H Ellison
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 226 | 1 |
58 | 21 | |
Figure | 0 | 2 |
Scanned page | 143 | 3 |
Citation downloads | 54 | 0 |
Totals | 481 | 27 |
Total Views | 508 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.