Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase.
J Hou, … , A V Chobanian, P Brecher
J Hou, … , A V Chobanian, P Brecher
Published November 1, 1995
Citation Information: J Clin Invest. 1995;96(5):2469-2477. https://doi.org/10.1172/JCI118305.
View: Text | PDF
Research Article Article has an altmetric score of 3

Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase.

  • Text
  • PDF
Abstract

These studies were performed to determine if the effects of angiotensin II infusion on the development of cardiac fibrosis could be modified by the chronic inhibition of nitric oxide synthase activity. NG-nitro-L-arginine-methyl ester (L-NAME) was administered to adult Wistar rats in drinking water (40 mg/kg per d). Although blood pressure was maintained at hypertensive levels after 2 wk, cardiac hypertrophy or fibrosis did not occur. Angiotensin II, given for 3 d at a dose which induced little or no blood pressure elevation and minimal if any fibrosis, caused significant fibrosis when given to a rat pretreated for 2 wk with L-NAME. This marked fibrosis did not occur if angiotensin II was given shortly after L-NAME treatment was begun or briefly after discontinuation of L-NAME. The fibrosis that occurred with combined treatment was characterized by increased immunodetectable fibronectin, the presence of inflammatory cells within interstitial and perivascular regions, and increased steady state mRNA levels for matrix genes and atrial natriuretic protein. The data indicated a regulatory role for nitric oxide in modulating the angiotensin II-induced cardiac fibrosis and suggest a potentially important autocrine or paracrine role for nitric oxide in fibroblast proliferation.

Authors

J Hou, H Kato, R A Cohen, A V Chobanian, P Brecher

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 214 13
PDF 53 11
Figure 0 5
Scanned page 331 5
Citation downloads 54 0
Totals 652 34
Total Views 686
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 11 patents
31 readers on Mendeley
See more details