Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (99)

Advertisement

Research Article Free access | 10.1172/JCI118197

A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing.

M Zaidi, V S Shankar, R Tunwell, O A Adebanjo, J Mackrill, M Pazianas, D O'Connell, B J Simon, B R Rifkin, and A R Venkitaraman

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Zaidi, M. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Shankar, V. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Tunwell, R. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Adebanjo, O. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Mackrill, J. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Pazianas, M. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by O'Connell, D. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Simon, B. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Rifkin, B. in: PubMed | Google Scholar

St. George's Hospital Medical School, University of London, United Kingdom.

Find articles by Venkitaraman, A. in: PubMed | Google Scholar

Published September 1, 1995 - More info

Published in Volume 96, Issue 3 on September 1, 1995
J Clin Invest. 1995;96(3):1582–1590. https://doi.org/10.1172/JCI118197.
© 1995 The American Society for Clinical Investigation
Published September 1, 1995 - Version history
View PDF
Abstract

Ryanodine receptors (RyRs) reside in microsomal membranes where they gate Ca2+ release in response to changes in the cytosolic Ca2+ concentration. In the osteoclast, a divalent cation sensor, the Ca2+ receptor (CaR), located within the cell's plasma membrane, monitors changes in the extracellular Ca2+ concentration. Here we show that a RyR-like molecule is a functional component of this receptor. We have demonstrated that [3H] ryanodine specifically binds to freshly isolated rat osteoclasts. The binding was displaced by ryanodine itself, the CaR agonist Ni2+ and the RyR antagonist ruthenium red. The latter also inhibited cytosolic Ca2+ elevations induced by Ni2+. In contrast, the responses to Ni2+ were strongly potentiated by an antiserum Ab129 raised to an epitope located within the channel-forming domain of the type II RyR. The antiserum also stained the surface of intact, unfixed, trypan blue-negative osteoclasts. Serial confocal sections and immunogold scanning electron microscopy confirmed a plasma membrane localization of this staining. Antiserum Ab34 directed to a putatively intracellular RyR epitope expectedly did not stain live osteoclasts nor did it potentiate CaR activation. It did, however, stain fixed, permeabilized cells in a distinctive cytoplasmic pattern. We conclude that an RyR-like molecule resides within the osteoclast plasma membrane and plays in important role in extracellular Ca2+ sensing.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1582
page 1582
icon of scanned page 1583
page 1583
icon of scanned page 1584
page 1584
icon of scanned page 1585
page 1585
icon of scanned page 1586
page 1586
icon of scanned page 1587
page 1587
icon of scanned page 1588
page 1588
icon of scanned page 1589
page 1589
icon of scanned page 1590
page 1590
Version history
  • Version 1 (September 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (99)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts