Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
12 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118134

Recognition of clonogenic leukemic cells, remission bone marrow and HLA-identical donor bone marrow by CD8+ or CD4+ minor histocompatibility antigen-specific cytotoxic T lymphocytes.

L M Faber, J van der Hoeven, E Goulmy, A L Hooftman-den Otter, S A van Luxemburg-Heijs, R Willemze, and J H Falkenburg

Department of Hematology, University Medical Center, Leiden, The Netherlands.

Find articles by Faber, L. in: JCI | PubMed | Google Scholar

Department of Hematology, University Medical Center, Leiden, The Netherlands.

Find articles by van der Hoeven, J. in: JCI | PubMed | Google Scholar

Department of Hematology, University Medical Center, Leiden, The Netherlands.

Find articles by Goulmy, E. in: JCI | PubMed | Google Scholar

Department of Hematology, University Medical Center, Leiden, The Netherlands.

Find articles by Hooftman-den Otter, A. in: JCI | PubMed | Google Scholar

Department of Hematology, University Medical Center, Leiden, The Netherlands.

Find articles by van Luxemburg-Heijs, S. in: JCI | PubMed | Google Scholar

Department of Hematology, University Medical Center, Leiden, The Netherlands.

Find articles by Willemze, R. in: JCI | PubMed | Google Scholar

Department of Hematology, University Medical Center, Leiden, The Netherlands.

Find articles by Falkenburg, J. in: JCI | PubMed | Google Scholar

Published August 1, 1995 - More info

Published in Volume 96, Issue 2 on August 1, 1995
J Clin Invest. 1995;96(2):877–883. https://doi.org/10.1172/JCI118134.
© 1995 The American Society for Clinical Investigation
Published August 1, 1995 - Version history
View PDF
Abstract

We investigated whether minor histocompatibility (mH) antigen-specific cytotoxic T lymphocytes (CTL) can discriminate between leukemic hematopoietic progenitor cells (leukemic-HPC) from AML or CML patients, the HPC from their remission bone marrow (remission-HPC), and normal HPC from their HLA-identical sibling bone marrow donor (donor-HPC). Specific lysis by CD8+ CTL clones was observed not only of the leukemic-HPC but also of the donor-HPC in 3/4 patient/donor combinations expressing mH antigen HA-1, 3/5 combinations expressing mH antigen HA-2, 2/3 combinations expressing mH antigen HA-3, and 2/2 combinations expressing mH antigen HY-A1. In four patient/donor combinations the recognition of the donor-HPC was clearly less than of the leukemic-HPC, indicating differential susceptibility to lysis by these mH CTL clones. In addition, differential recognition of leukemic-HPC and remission-HPC within seven patients was analyzed. In one patient expressing the HA-2 antigen on the leukemic cells the recognition of the remission-HPC was clearly less than of the leukemic-HPC. One CD4+ CTL clone showed specific lysis of the leukemic-HPC from an AML patient and a CML patient as well as of normal remission-HPC and donor-HPC. These results illustrate that in general CD8+ and CD4+ mH antigen specific CTL clones do not differentially recognize leukemic-HPC and normal-HPC. However, differences in susceptibility to lysis of malignant versus normal cells may contribute to a differential GVL effect.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 877
page 877
icon of scanned page 878
page 878
icon of scanned page 879
page 879
icon of scanned page 880
page 880
icon of scanned page 881
page 881
icon of scanned page 882
page 882
icon of scanned page 883
page 883
Version history
  • Version 1 (August 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
12 readers on Mendeley
See more details