Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
77 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118124

Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans.

A D Baron, H O Steinberg, H Chaker, R Leaming, A Johnson, and G Brechtel

Department of Medicine, Indiana University Medical Center, Indianapolis 46202, USA.

Find articles by Baron, A. in: JCI | PubMed | Google Scholar

Department of Medicine, Indiana University Medical Center, Indianapolis 46202, USA.

Find articles by Steinberg, H. in: JCI | PubMed | Google Scholar

Department of Medicine, Indiana University Medical Center, Indianapolis 46202, USA.

Find articles by Chaker, H. in: JCI | PubMed | Google Scholar

Department of Medicine, Indiana University Medical Center, Indianapolis 46202, USA.

Find articles by Leaming, R. in: JCI | PubMed | Google Scholar

Department of Medicine, Indiana University Medical Center, Indianapolis 46202, USA.

Find articles by Johnson, A. in: JCI | PubMed | Google Scholar

Department of Medicine, Indiana University Medical Center, Indianapolis 46202, USA.

Find articles by Brechtel, G. in: JCI | PubMed | Google Scholar

Published August 1, 1995 - More info

Published in Volume 96, Issue 2 on August 1, 1995
J Clin Invest. 1995;96(2):786–792. https://doi.org/10.1172/JCI118124.
© 1995 The American Society for Clinical Investigation
Published August 1, 1995 - Version history
View PDF
Abstract

Whether insulin-mediated vasodilation is important in determining insulin's overall action to stimulate glucose uptake is unknown. To this end, we measured leg glucose uptake during euglycemic hyperinsulinemic clamps performed at two insulin doses (40 mU/m2 per min, n = 6 and 120 mU/m2 per min, n = 15) alone and during a superimposed intrafemoral artery infusion of GN-monomethyl-L-arginine (L-NMMA) designed to blunt insulin-mediated vasodilation. During the higher dose study, hyperinsulinemia resulted in about a twofold rise in basal leg blood flow from 0.24 +/- 0.02 to 0.45 +/- 0.05 liter/min, P < 0.0001. L-NMMA infusion resulted in a net 21% reduction in leg glucose uptake from 114 +/- 18 mg/min to 85 +/- 13 mg/min, P < 0.001. We also found a significant relationship between the rate of insulin-stimulated whole body glucose uptake and the magnitude of flow dependent glucose uptake (r = 0.57, P = 0.02). Data obtained during the lower dose insulin infusion resulted in similar findings. In conclusion, in healthy lean subjects, insulin-stimulated muscle blood flow contributes to both insulin responsiveness and insulin sensitivity. The most insulin-sensitive subjects appear to be the most reliant on muscle perfusion for insulin action. Insulin-mediated vasodilation is an important physiological determinant of insulin action.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 786
page 786
icon of scanned page 787
page 787
icon of scanned page 788
page 788
icon of scanned page 789
page 789
icon of scanned page 790
page 790
icon of scanned page 791
page 791
icon of scanned page 792
page 792
Version history
  • Version 1 (August 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
77 readers on Mendeley
See more details