Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (39)

Advertisement

Research Article Free access | 10.1172/JCI118069

A functional cyclic AMP response element plays a crucial role in neuroendocrine cell type-specific expression of the secretory granule protein chromogranin A.

H Wu, S K Mahata, M Mahata, N J Webster, R J Parmer, and D T O'Connor

Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Wu, H. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Mahata, S. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Mahata, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Webster, N. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92161, USA.

Find articles by Parmer, R. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Diego 92161, USA.

Find articles by O'Connor, D. in: JCI | PubMed | Google Scholar

Published July 1, 1995 - More info

Published in Volume 96, Issue 1 on July 1, 1995
J Clin Invest. 1995;96(1):568–578. https://doi.org/10.1172/JCI118069.
© 1995 The American Society for Clinical Investigation
Published July 1, 1995 - Version history
View PDF
Abstract

Chromogranin A, a soluble acidic protein, is a ubiquitous component of secretory vesicles throughout the neuroendocrine system. We reported previously the cloning and initial characterization of the mouse chromogranin A gene promoter, which showed that the promoter contains both positive and negative domains and that a proximal promoter spanning nucleotides -147 to +42 bp relative to the transcriptional start site is sufficient for neuroendocrine cell type-specific expression. The current study was undertaken to identify the particular elements within this proximal promoter that control tissue-specific expression. We found that deletion or point mutations in the potential cAMP response element (CRE) site at -68 bp virtually abolished promoter activity specifically in neuroendocrine (PC12 chromaffin or AtT20 corticotrope) cells, with little effect on activity in control (NIH3T3 fibroblast) cells; thus, the CRE box is necessary for neuroendocrine cell type-specific activity of the chromogranin A promoter. Furthermore, the effect of the CRE site is enhanced in the context of intact (wild-type) promoter sequences between -147 and -100 bp. DNase I footprint analysis showed that these regions (including the CRE box) bind nuclear proteins present in both neuroendocrine (AtT20) and control (NIH3T3) cells. In AtT20 cells, electrophoretic mobility shift assays and factor-specific antibody supershifts showed that an oligonucleotide containing the chromogranin A CRE site formed a single, homogeneous protein-DNA complex containing the CRE-binding protein CREB. However, in control NIH3T3 cells we found evidence for an additional immunologically unrelated protein in this complex. A single copy of this oligonucleotide was able to confer neuroendocrine-specific expression to a heterologous (thymidine kinase) promoter, albeit with less fold selectivity than the full proximal chromogranin A promoter. Hence, the CRE site was partially sufficient to explain the neuroendocrine cell type specificity of the promoter. The functional activity of the CRE site was confirmed through studies of the endogenous chromogranin A gene. Northern mRNA analysis showed that expression of the endogenous chromogranin A gene was stimulated seven- to eightfold by cAMP in PC12 cells, whereas no induction occurred in the NIH3T3 cells. Similar cAMP induction was obtained with the transfected chromogranin A promoter in PC12 cells, and abolition of the CRE site (by deletion or point mutation) eliminated the induction. Thus, the CRE site in the chromogranin A proximal promoter is functional and plays a crucial, indeed indispensable, role in neuroendocrine-specific expression of the gene. These results also provide insight into transcriptional mechanisms governing acquisition of the neuroendocrine secretory phenotype.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 568
page 568
icon of scanned page 569
page 569
icon of scanned page 570
page 570
icon of scanned page 571
page 571
icon of scanned page 572
page 572
icon of scanned page 573
page 573
icon of scanned page 574
page 574
icon of scanned page 575
page 575
icon of scanned page 576
page 576
icon of scanned page 577
page 577
icon of scanned page 578
page 578
Version history
  • Version 1 (July 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (39)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts