Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (94)

Advertisement

Research Article Free access | 10.1172/JCI118061

Inhibition of calcitriol receptor binding to vitamin D response elements by uremic toxins.

S R Patel, H Q Ke, R Vanholder, R J Koenig, and C H Hsu

Nephrology Division, University of Michigan Medical School, Ann Arbor 48109-0364, USA.

Find articles by Patel, S. in: JCI | PubMed | Google Scholar

Nephrology Division, University of Michigan Medical School, Ann Arbor 48109-0364, USA.

Find articles by Ke, H. in: JCI | PubMed | Google Scholar

Nephrology Division, University of Michigan Medical School, Ann Arbor 48109-0364, USA.

Find articles by Vanholder, R. in: JCI | PubMed | Google Scholar

Nephrology Division, University of Michigan Medical School, Ann Arbor 48109-0364, USA.

Find articles by Koenig, R. in: JCI | PubMed | Google Scholar

Nephrology Division, University of Michigan Medical School, Ann Arbor 48109-0364, USA.

Find articles by Hsu, C. in: JCI | PubMed | Google Scholar

Published July 1, 1995 - More info

Published in Volume 96, Issue 1 on July 1, 1995
J Clin Invest. 1995;96(1):50–59. https://doi.org/10.1172/JCI118061.
© 1995 The American Society for Clinical Investigation
Published July 1, 1995 - Version history
View PDF
Abstract

The genomic action of calcitriol (1,25-dihydroxy-vitamin D3) is mediated through the interaction of the calcitriol receptor (VDR) with vitamin D response elements (VDREs). Although renal failure is associated with resistance to the action of calcitriol, the mechanism of this resistance is not well understood. Therefore, we used the electrophoretic mobility shift assay to compare the ability of VDRs from normal and renal failure rats to bind to the osteocalcin gene VDRE. The results indicate that VDRs from renal failure rats have only half the DNA binding capacity as VDRs from control rats, despite identical calcitriol binding. Furthermore, incubation of normal VDRs with a uremic plasma ultrafiltrate resulted in a loss of > 50% of the binding sites for the osteocalcin VDRE. When VDRs bound to DNA as heterodimers with retinoid X receptors, the inhibitory effect of the uremic ultrafiltrate was due to a specific interaction with the VDR, not retinoid X receptors. In addition, uremic ultrafiltrate blocked calcitriol-induced reporter gene activity in transfected JEG-3 cells. Taken together, the results indicate that an inhibitory effect of a uremic toxin(s) on VDR-VDRE binding could underlie the calcitriol resistance of renal failure.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 50
page 50
icon of scanned page 51
page 51
icon of scanned page 52
page 52
icon of scanned page 53
page 53
icon of scanned page 54
page 54
icon of scanned page 55
page 55
icon of scanned page 56
page 56
icon of scanned page 57
page 57
icon of scanned page 58
page 58
icon of scanned page 59
page 59
Version history
  • Version 1 (July 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (94)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts