Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Tissue plasminogen activator (tPA) inhibits plasmin degradation of fibrin. A mechanism that slows tPA-mediated fibrinolysis but does not require alpha 2-antiplasmin or leakage of intrinsic plasminogen.
J H Wu, S L Diamond
J H Wu, S L Diamond
Published June 1, 1995
Citation Information: J Clin Invest. 1995;95(6):2483-2490. https://doi.org/10.1172/JCI117949.
View: Text | PDF
Research Article Article has an altmetric score of 5

Tissue plasminogen activator (tPA) inhibits plasmin degradation of fibrin. A mechanism that slows tPA-mediated fibrinolysis but does not require alpha 2-antiplasmin or leakage of intrinsic plasminogen.

  • Text
  • PDF
Abstract

Thrombolysis is dramatically slower when high concentrations of lytic agent are used. This paradoxical observation, first described as "plasminogen steal," was originally believed to be due to depletion of extrinsic plasminogen and consequent leaching of clot-bound plasminogen. We report that administration of increasing concentrations of recombinant human tissue plasminogen activator (tPA) to fibrin gels resulted in lysis rates that displayed a maximum, with significantly slower rates found at higher tPA, regardless of whether plasminogen was supplied extrinsically or intrinsically. A similar maximum in lysis rates was observed in a system lacking an extrinsic phase when plasminogen was added to fibrin suspensions preincubated with increasing tPA. Thus, intrinsic plasminogen leakage and alpha 2-antiplasmin were not required for the decreased lysis at high tPA. No maximum was observed for increasing concentrations of urokinase. Using fibrin suspensions or gels preincubated with tPA before addition of plasmin, we report that tPA, but not urokinase, caused a dose-dependent inhibition of the fibronolytic action of plasmin. With respect to optimal dosage schemes and the design of novel lytic agents, these findings indicate that (a) there exists a biochemical mechanism against minimizing reperfusion time with increasing tPA dosages and (b) the fibrin affinity of tPA may cause reduced fibrinolysis by plasmin.

Authors

J H Wu, S L Diamond

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 192 52
PDF 62 23
Scanned page 375 2
Citation downloads 60 0
Totals 689 77
Total Views 766
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 1
16 readers on Mendeley
See more details