Reductions in bone density are a major determinant of vertebral fractures in the elderly population. However, women have a greater incidence of fractures than men, although their spinal bone densities are comparable. Recent observations indicate that women have 20-25% smaller vertebrae than men after accounting for differences in body size. To assess whether elderly women with vertebral fractures have smaller vertebrae than women who do not experience fractures, we reviewed 1,061 computed tomography bone density studies and gathered 32-matched pairs of elderly women, with reduced bone density, whose main difference was absence or presence of vertebral fractures. Detailed measurements of the dimensions of unfractured vertebrae and the moment arm of spinal musculature from T12 to L4 were calculated from computed tomography images in the 32 pairs of women matched for race, age, height, weight, and bone density. The cross-sectional area of unfractured vertebrae was 4.9-11.5% (10.5 +/- 1.4 vs 9.7 +/- 1.5 cm2; P < 0.0001) smaller and the moment arm of spinal musculature was 3.2-7.4% (56.4 +/- 5.1 vs 53.1 +/- 4.4 mm; P < 0.0001) shorter in women with fractures, implying that mechanical stress within intact vertebral bodies for equivalent loads is 5-17% greater in women with fractures compared to women without fractures. Such significant variations are very likely to contribute to vertebral fractures in osteoporotic women.
V Gilsanz, M L Loro, T F Roe, J Sayre, R Gilsanz, E E Schulz
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 197 | 8 |
45 | 24 | |
Scanned page | 229 | 7 |
Citation downloads | 69 | 0 |
Totals | 540 | 39 |
Total Views | 579 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.