Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A synthetic tumor necrosis factor-alpha agonist peptide enhances human polymorphonuclear leukocyte-mediated killing of Plasmodium falciparum in vitro and suppresses Plasmodium chabaudi infection in mice.
L M Kumaratilake, … , V Prasertsiriroj, A Ferrante
L M Kumaratilake, … , V Prasertsiriroj, A Ferrante
Published May 1, 1995
Citation Information: J Clin Invest. 1995;95(5):2315-2323. https://doi.org/10.1172/JCI117923.
View: Text | PDF
Research Article

A synthetic tumor necrosis factor-alpha agonist peptide enhances human polymorphonuclear leukocyte-mediated killing of Plasmodium falciparum in vitro and suppresses Plasmodium chabaudi infection in mice.

  • Text
  • PDF
Abstract

A peptide corresponding to residues 70-80 of the TNF-alpha polypeptide was synthesized and shown to enhance human PMN-mediated killing of Plasmodium falciparum in vitro and reduced the Plasmodium chabaudi parasitemia in mice. Studies of the mechanism of action showed that the peptide, TNF(70-80), stimulated and primed PMN for an increased respiratory burst and release of granule constituents in response to a second agonist. The PMN-stimulatory activity of the peptide was inhibited by mAbs against the p55 and p75 TNF receptors and a TNF-neutralizing mAb. Analysis of PMN receptor expression showed that CR3 (CD18/CD11b) and Fc gamma RIII were upregulated by TNF(70-80), which was consistent with the peptide's ability to enhance parasite killing by PMN. The peptide, unlike TNF, did not increase the expression of adhesion molecules on endothelial cells and failed to promote binding of P. falciparum-infected erythrocytes to endothelial cells. TNF(70-80) also inhibited the TNF-induced increase in adhesion of P. falciparum-infected erythrocytes to endothelial cells. The results demonstrate that the host-protective effects of TNF can be retained while toxic effects are eliminated using a selected, characterized subunit of the cytokine.

Authors

L M Kumaratilake, D A Rathjen, P Mack, F Widmer, V Prasertsiriroj, A Ferrante

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts