We have studied the degradation of type X collagen by metalloproteinases, cathepsin B, and osteoclast-derived lysates. We had previously shown (Welgus, H. G., C. J. Fliszar, J. L. Seltzer, T. M. Schmid, and J. J. Jeffrey. 1990. J. Biol. Chem. 265:13521-13527) that interstitial collagenase rapidly attacks the native 59-kD type X molecule at two sites, rendering a final product of 32 kD. This 32-kD fragment, however, has a Tm of 43 degrees C due to a very high amino acid content, and thus remains helical at physiologic core temperature. We now report that the 32-kD product resists any further attack by several matrix metalloproteinases including interstitial collagenase, 92-kD gelatinase, and matrilysin. However, this collagenase-generated fragment can be readily degraded to completion by cathepsin B at 37 degrees C and pH 4.4. Interestingly, even under acidic conditions, cathepsin B cannot effectively attack the whole 59-kD type X molecule at 37 degrees C, but only the 32-kD collagenase-generated fragment. Most importantly, the 32-kD fragment was also degraded at acid pH by cell lysates isolated from murine osteoclasts. Degradation of the 32-kD type X collagen fragment by osteoclast lysates exhibited the following properties: (a) cleavage occurred only at acidic pH (4.4) and not at neutral pH; (b) the cysteine proteinase inhibitors E64 and leupeptin completely blocked degradation; and (c) specific antibody to cathepsin B was able to inhibit much of the lysate-derived activity. Based upon these data, we postulate that during in vivo endochondral bone formation type X collagen is first degraded at neutral pH by interstitial collagenase secreted by resorbing cartilage-derived cells. The resulting 32-kD fragment is stable at core temperature and further degradation requires osteoclast-derived cathepsin B supplied by invading bone.
U I Sires, T M Schmid, C J Fliszar, Z Q Wang, S L Gluck, H G Welgus
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 213 | 3 |
45 | 24 | |
Scanned page | 310 | 3 |
Citation downloads | 64 | 0 |
Totals | 632 | 30 |
Total Views | 662 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.