The pathogeneses of parathyroid disease in patients with uremia and nonfamilial primary parathyroid hyperplasia are poorly understood. Because of multigland involvement, it has been assumed that these common diseases predominantly involve polyclonal (non-neoplastic) cellular proliferations, but an overall assessment of their clonality has not been done. We examined the clonality of these hyperplastic parathyroid tumors using X-chromosome inactivation analysis with the M27 beta (DXS255) DNA polymorphism and by searching for monoclonal allelic losses at M27 beta and at loci on chromosome band 11q13. Fully 7 of 11 informative hemodialysis patients (64%) with uremic refractory hyperparathyroidism harbored at least one monoclonal parathyroid tumor (with a minimum of 12 of their 19 available glands being monoclonal). Tumor monoclonality was demonstrable in 6 of 16 informative patients (38%) with primary parathyroid hyperplasia. Histopathologic categories of nodular versus generalized hyperplasia were not useful predictors of clonal status. These observations indicate that monoclonal parathyroid neoplasms are common in patients with uremic refractory hyperparathyroidism and also develop in a substantial group of patients with sporadic primary parathyroid hyperplasia, thereby changing our concept of the pathogenesis of these diseases. Neoplastic transformation of preexisting polyclonal hyperplasia, apparently due in large part to genes not yet implicated in parathyroid tumorigenesis and possibly including a novel X-chromosome tumor suppressor gene, is likely to play a central role in these disorders.
A Arnold, M F Brown, P Ureña, R D Gaz, E Sarfati, T B Drüeke
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 204 | 5 |
38 | 23 | |
Figure | 0 | 3 |
Scanned page | 248 | 2 |
Citation downloads | 45 | 0 |
Totals | 535 | 33 |
Total Views | 568 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.