The effect of arginine vasopressin (AVP) on NaCl transport was investigated in the isolated microperfused hamster ascending thin limb of Henle's loop by measuring transepithelial voltage (Vt) and transmural 22Na+ and 36Cl- fluxes. In the presence of a transmural NaCl concentration gradient (100 mM higher in the lumen), Vt was 8.4 +/- 0.4 mV. Addition of 1 nM AVP to the basolateral solution increased Vt to 9.6 +/- 0.4 mV, which corresponds to an increase in the Cl- to Na+ permselectivity ratio (PCl/PNa) from 2.8 +/- 0.2 to 3.4 +/- 0.2. AVP at physiological concentrations increased Vt in a dose-dependent manner with an ED50 of 5 pM. AVP increased the Cl- efflux coefficient from 99.6 +/- 6.3 to 131.4 +/- 10.6 x 10(-7) cm2/s without affecting the Na+ efflux coefficient. 5-Nitro-2-(3-phenyl-propylamino)-benzoate (0.2 mM), a Cl- channel inhibitor, in the perfusate decreased the basal Cl- efflux coefficient and inhibited the AVP-induced increase in this parameter. The AVP-induced increase in Vt was not affected by [d(CH2)5(1),O-Me-Tyr2,Arg8] vasopressin, a V1 receptor antagonist, but was abolished by [d(CH2)5,D-Ile2,Ile4,Arg8] vasopressin, a V2 receptor antagonist. The selective V2 agonist dDAVP in 1 nM also increased Vt from 8.6 +/- 0.7 to 9.5 +/- 0.6 mV. Dibutyryl cAMP and forskolin both increased Vt, whereas H89, an inhibitor of cAMP-dependent protein kinase, abolished the AVP-induced increase in Vt. These results demonstrate that AVP stimulates Cl- transport in the ascending thin limb of Henle's loop by activating Cl- channels via a signal transduction cascade comprising V2 receptors, adenylate cyclase, and cAMP-dependent protein kinase. The ascending thin limb of Henle's loop thus participates in the formation of concentrated urine as one of the target renal tubular segments of AVP.
N Takahashi, Y Kondo, O Ito, Y Igarashi, K Omata, K Abe
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 96 | 1 |
49 | 17 | |
Scanned page | 167 | 1 |
Citation downloads | 57 | 0 |
Totals | 369 | 19 |
Total Views | 388 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.