The plasma cholesteryl ester transfer protein (CETP) mediates the exchange of HDL cholesteryl esters (CE) and VLDL triglycerides leading to catabolism of HDL. There is some evidence that HDL ameliorates the toxicity of LPS, and LPS is known to influence several enzymes affecting HDL metabolism. Therefore, the effects of LPS on CETP and plasma lipoproteins were examined in human CETP transgenic mice. Administration of LPS to mice expressing a CETP transgene linked to its natural flanking sequences (NFR-CETP Tg) resulted in a rapid marked decrease in hepatic CETP mRNA and plasma CETP concentration. Corticosteroid injection produced a similar decrease in hepatic CETP mRNA and adrenalectomy abolished this response to LPS. LPS caused disproportionate reductions in plasma CETP activity compared to mass, and was found to be a potent inhibitor of CETP activity when added directly to plasma. LPS was injected into mice expressing (A) a human apoA-I transgene, (B) apoA-I and NFR-CETP transgenes, or (C) apoA-I and LPS-inducible metallothionein promoter-driven CETP transgenes, producing (A) minimal changes in HDL cholesterol, (B) decreased plasma CETP and increased HDL cholesterol, and (C) increased plasma CETP and decreased HDL cholesterol. Thus, LPS administration produces a profound decrease in hepatic CETP mRNA, primarily as a result of adrenal corticosteroid release. The decrease in plasma CETP activity after LPS administration may reflect both this effect as well as a direct interaction between CETP and LPS. The decrease of CETP in response to LPS has major effects on HDL levels, and may represent an adaptive response to preserve or increase HDL and thereby modify the response to LPS.
L Masucci-Magoulas, P Moulin, X C Jiang, H Richardson, A Walsh, J L Breslow, A Tall
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 184 | 5 |
49 | 26 | |
Scanned page | 358 | 4 |
Citation downloads | 63 | 0 |
Totals | 654 | 35 |
Total Views | 689 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.