Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117789

Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells.

L G Johnson, S E Boyles, J Wilson, and R C Boucher

Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill 27599-7020.

Find articles by Johnson, L. in: PubMed | Google Scholar

Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill 27599-7020.

Find articles by Boyles, S. in: PubMed | Google Scholar

Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill 27599-7020.

Find articles by Wilson, J. in: PubMed | Google Scholar

Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill 27599-7020.

Find articles by Boucher, R. in: PubMed | Google Scholar

Published March 1, 1995 - More info

Published in Volume 95, Issue 3 on March 1, 1995
J Clin Invest. 1995;95(3):1377–1382. https://doi.org/10.1172/JCI117789.
© 1995 The American Society for Clinical Investigation
Published March 1, 1995 - Version history
View PDF
Abstract

Cystic fibrosis airway epithelia exhibit a spectrum of ion transport properties that differ from normal, including not only defective cAMP-mediated Cl- secretion, but also increased Na+ absorption and increased Ca(2+)-mediated Cl- secretion. In the present study, we examined whether adenovirus-mediated (Ad5) transduction of CFTR can correct all of these CF ion transport abnormalities. Polarized primary cultures of human CF and normal nasal epithelial cells were infected with Ad5-CBCFTR at an moi (10(4)) which transduced virtually all cells or Ad5-CMV lacZ as a control. Consistent with previous reports, Ad5-CBCFTR, but not Ad5-CMV lacZ, corrected defective CF cAMP-mediated Cl- secretion. Basal Na+ transport rates (basal Ieq) in CF airway epithelial sheets (-78.5 +/- 9.8 microA/cm2) were reduced to levels measured in normal epithelial sheets (-30.0 +/- 2.0 microA/cm2) by Ad5-CBCFTR (-36.9 +/- 4.8 microA/cm2), but not Ad5-CMV lacZ (-65.8 +/- 6.1 microA/cm2). Surprisingly, a significant reduction in delta Ieq in response to ionomycin, a measure of Ca(2+)-mediated Cl- secretion, was observed in CFTR-expressing (corrected) CF epithelial sheets (-6.9 +/- 11.8 microA/cm2) when compared to uninfected CF epithelial sheets (-76.2 +/- 15.1 microA/cm2). Dose response effects of Ad5-CBCFTR on basal Na+ transport rates and Ca(2+)-mediated Cl- secretion suggest that the mechanism of regulation of these two ion transport functions by CFTR may be different. In conclusion, efficient transduction of CFTR corrects hyperabsorption of Na+ in primary CF airway epithelial cells and restores Ca(2+)-mediated Cl- secretion to levels observed in normal airway epithelial cells. Moreover, assessment of these ion transport abnormalities may represent important endpoints for testing the efficacy of gene therapy for cystic fibrosis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1377
page 1377
icon of scanned page 1378
page 1378
icon of scanned page 1379
page 1379
icon of scanned page 1380
page 1380
icon of scanned page 1381
page 1381
icon of scanned page 1382
page 1382
Version history
  • Version 1 (March 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts