Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Congenital erythropoietic porphyria: identification and expression of 10 mutations in the uroporphyrinogen III synthase gene.
W Xu, … , C A Warner, R J Desnick
W Xu, … , C A Warner, R J Desnick
Published February 1, 1995
Citation Information: J Clin Invest. 1995;95(2):905-912. https://doi.org/10.1172/JCI117742.
View: Text | PDF
Research Article Article has an altmetric score of 3

Congenital erythropoietic porphyria: identification and expression of 10 mutations in the uroporphyrinogen III synthase gene.

  • Text
  • PDF
Abstract

To investigate the molecular basis of the phenotypic heterogeneity in congenital erythropoietic porphyria, the mutations in the uroporphyrinogen III synthase gene from unrelated patients were determined. Six missense (L4F, Y19C, V82F, V99A, A104V, and G225S), a nonsense (Q249X), a frameshift (633insA), and two splicing mutations (IVS2+1 and IVS9 delta A + 4) were identified. When L4F, Y19C, V82F, V99A, A104V, 633insA, G225S, and Q249X were expressed in Escherichia coli, only the V82F, V99A, and A104V alleles expressed residual enzymatic activity. Of note, the V82F mutation, which occurs adjacent to the 5' donor site of intron 4, resulted in approximately 54% aberrantly spliced transcripts with exon 4 deleted. Thus, this novel exonic single-base substitution caused two lesions, a missense mutation and an aberrantly spliced transcript. Of the splicing mutations, the IVS2+1 allele produced a single transcript with exon 2 deleted, whereas the IVS9 delta A+4 allele was alternatively spliced, approximately 26% being normal transcripts and the remainder with exon 9 deleted. The amount of residual activity expressed by each allele provided a basis to correlate genotype with disease severity, thereby permitting genotype/phenotype predictions in this clinically heterogeneous disease.

Authors

W Xu, C A Warner, R J Desnick

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 178 13
PDF 50 32
Figure 0 2
Scanned page 330 19
Citation downloads 60 0
Totals 618 66
Total Views 684
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 Wikipedia pages
8 readers on Mendeley
See more details